
V

AFRL-IF-RS-TR-2002-139
Final Technical Report
June 2002

^^r

DYNAMIC SECURITY ANALYSIS OF COSTS
APPLICATIONS

Reliable Software Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F021

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20020805 159

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-139 has been reviewed and is approved for publication.

d.6sL
APPROVED: JOHN C.FAUST

Project Engineer

FOR THE DIRECTOR: WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Jun 02
3. REPORT TYPE AND DATES COVERED

 Final Aug 97 - Aug 99
4. TITLE AND SUBTITLE

DYNAMIC SECURITY ANALYSIS OF COTS APPLICATIONS

6. AUTHOR(S)

Matthew Schmid, Anup Ghosh and Frank Hill

5. FUNDING NUMBERS

C -F30602-97-C-0117
PE - 62301E/33140F
PR -2301
TA -01
WU -05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Reliable Software Technologies
21351 Ridgetop Circle
Suite 400
Dulles, VA 20166

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 N. Fairfax Dr
Arlington, VA 22203-1714

AFRL/IFGB
525 Brooks Rd
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-139

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John Faust, IFGB, 315-330-4544

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words!

This is the final technical report for a research effort whose objective was to analyze the robustness of Commercial
Off-the-Shelf (COTS) software on the Windows NT platform. Robustness to anomalous data plays an integral role in the
security of mission-critical COTS software. This report describes the experiments conducted, analysis of results, and
prototypes built during the duration of the project. The bulk of this report discusses the three subprojects that formed the
core of this research: The Random and Intelligent Data Design Library Environment (RIDDLE), NetHose, and the Failure
Simulation Tool (FST). RIDDLE is a testing framework that provides the ability to perform automated testing of
command-line utilities, Application Programming Interfaces (APIs), and network daemons. NetHose is a utility that can be
used to test the robustness of the network stack. Both RIDDLE and NetHose rely on the use of a special input generation
technique developed for this project. The FST is a prototype tool that allows a tester to analyze the robustness of a COTS
application to the failure of operating system calls. The rationale, design, and use of each tool are discussed.

14. SUBJECT TERMS

Information Warfare, Automated Testing, Software Robustness, Denial of Service Attack, Test
Data Generation

15. NUMBER OF PAGES

62
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

1. Executive Summary 1
Introduction 3

2. Subprojects 3
2.1 RIDDLE 4

2.1.1 Motivation 4
2.1.2 Related Work 5

2.1.2.1 Fuzz 5
2.1.2.2 Ballista 6

2.1.3 Input Data Generation 7
2.1.3.1 Generic Data 7
2.1.3.2 Intelligent Data 8

2.1.4 The Experiment 8
2.1.4.1 Component Robustness 8
2.1.4.2 Test Framework 9
2.1.4.3 Win32 API Function Testing 12

2.1.4.3.1 Generic Win32 API Testing 12
2.1.4.3.2 Intelligent Win3ZAPI Testing 13
2.1.4.3.3 Win32 API Testing Results 13

2.1.4.4 Win32 Command Line Utility Testing 15
2.1.4.4.1 Generic Command Line Utility Testing 16
2.1.4.4.2 Intelligent Command Line Utility Testing 16
2.1.4.4.3 Command Line Utility Testing Results 17

2.1.4.5 The Grammar Generator 20
2.1.4.5.1 Grammar Generator Theory 20
2.1.4.5.2 Architecture 21
2.1.4.5.3 Command-Line Utility Testing with the

Grammar Generator 24
2.1.4.5.4 Network Daemon Testing with the

Grammar Generator 25
2.1.5 Conclusions 26

2.2 NetHose - A Tool for Testing the Robustness of the Network Stack 27
2.2.1 Introduction 27
2.2.2 Approach 28
2.2.3 Network Stack Overview 28

2.2.3.1 Protocol Headers 29
2.2.3.2 IP Fragmentation 30
2.2.3.3 Berkeley Raw Sockets 31

2.2.4 Data Generators 31
2.2.5 Test Framework 32
2.2.6 Methodology 32
2.2.7 Testing Setup 33
2.2.8 Description of Robustness Weaknesses Found 33
2.2.9 Testing Results 34

2.2.10 Conclusions 34
2.3 The Failure Simulation Tool 35

2.3.1 Introduction 35
2.3.2 Background 36
2.3.3 Errors and Exceptions 38
2.3.4 Wrapping Win32 COTS Software for Failure Simulation 39
2.3.5 Using the Failure Simulation Tool 42
2.3.6 Conclusions 44

3. Project Summary 45
4. Statement of Work References 46

4.1 The Contractor shall accomplish the following: 46
4.1.1 Input Generation Language 46
4.1.2 Input Generation and Perturbation Module 47
4.1.3 Security Assertion Language 47
4.1.4 Security Watchdog Module 47
4.1.5 Execution Manager 47
4.1.6 COTS Experimentation 47
4.1.7 Deliver and demonstrate the CVA prototype system at RL/IWT 48
4.1.8 Reports and Documentation 48
4.1.9 Software 48

5. Papers and Presentations 48

ii

LIST OF FIGURES

Figure Page

1 Testing Framework 9
2 Win32 API Function Testing GUI - Test configuration screen 11
3 Win32 API Functin Testing GUI - Report manager screen 12
4 Win32 Function Testing Results 14
5 Screen capture of a robustness failure discovered in the native Windows NT command line

utility comp 18
6 Character Sets 19
7 String Length 20
8 Path of Data through the Network Stack 29
9 The TCP Header 29
10 TheUDP Header 30
11 The IP Header 30
12 Wrapping Win32 executable Programs 40
13 The Failure Simulation Tool GUI 43

in

Executive Summary

In this project, we examined a key property of secure and dependable systems:
robustness. Our research focused on developing techniques for analyzing as well as
increasing the robustness of software due to unknown and anomalous events. The project
was partitioned into three distinct and complementary threads of robustness research:
intelligent test case generation, testing of the Win32 network stack for resilience to denial
of service, and testing application software for robustness to failing operating system
(OS) resources.

The Random and Intelligent Data Design Library Environment (RIDDLE) was developed
to support intelligent black-box testing of operating system and command-line utilities to
unusual inputs. The work leveraged research in robustness testing of OS utilities
previously performed on Unix systems, most notably by Barton Miller's research group at
the University of Wisconsin. Robustness testing of OS utilities has previously found
vulnerabilities in operating system software to unexpected, random input. Adopting this
approach for the Win32 platform, we enhanced it further by intelligently combining valid
input with anomalous input in order to unmask flaws that remain hidden to purely
random testing. RIDDLE provides a test harness and library for automatically generating
test data according to both random (generally invalid) and valid parameters. Our studies
have shown empirically the benefit derived from combining intelligent test data
generation with random test case generation for the purpose of testing robustness.

Drawing on the experience of RIDDLE, we developed NetHose; a tool for testing the
robustness of the Win32 network stack to anomalous data. The importance of this work is
in developing structured approaches to testing critical portions of software that comprises
the National Information Infrastructure (Nil). Since, the network stack of the Win32
platform is a key component of the Nil, this approach is among the first to independently
and systematically study the robustness of this software under anomalous input
conditions. Fundamental problems in the design of network protocols such as TCP/IP
can leave all platforms vulnerable. However, flaws, in the networking software can leave
a given platform vulnerable to anomalous use of network services, or attack. NetHose is a
network stack testing utility that is able to test the network stack of Win32 systems to
unexpected data. This type of analysis effectively tests the operating system's ability to
handle unusual network packets. The approach uses combinations of valid and invalid
data in packet header fields in order to test the robustness of the network stack against
unusual packet headers. Our studies revealed three types of robustness failures: kernel
exceptions (colloquially known as blue screen of death), hard freezes, and system
slowdowns.

The third thread of research in this project was concerned with testing the robustness of
Win32 applications under failing OS conditions. From our previous research with
RIDDLE, we found that the three core libraries that compose the Win32 system more
often than not throw memory access violation exceptions when presented unusual input.
Thus, if application developers (particularly for mission-critical applications) do not
account for these exceptions that the OS throws, then the application is likely to crash.
The Failure Simulation Tool (FST) provides the ability to test Win32 executables
(without requiring source code) for robustness to exceptions or errors returned by OS
functions. FST instruments the interface between an application and the OS DLL in order
to return errors or exceptions from an OS function. This is a far more efficient approach
than black-box testing of an application in hopes of generating an OS exception.
Experiments showed that Microsoft desktop applications had varying levels of non-
robustness to exceptions and errors returned by OS functions. This type of non-robust
behavior is typically expected from desktop applications. However, non-robustness to
errors or exceptions returned from OS functions is typically not acceptable in a mission-
critical application, such as a ship propulsion system. Thus, FST provides the ability to
test mission-critical software for robustness to failing OS functions. In the final stage of
this work, we used the instrumentation layer to provide protective wrappers for
applications such that an exception can be caught by the wrapper and returned as an error
when it is known a priori that the error is handled gracefully, while an exception is not.

In summary, the work performed under this contract has significantly advanced the state-
of-the-art in a key area or security and dependability of Win32 systems: software
robustness. We've developed and delivered three distinct technologies for analyzing and
improving the robustness of Win32 systems under unusual conditions associated either
with malicious attack or misbehaving operating system functions.

Dynamic Security Analysis of COTS Applications
Contract No. F30602-97-C-0117

Statement of Work Item 4.1.8.3

Document all technical work accomplished and information generated during the performance of the
project. This shall include both positive and negative results, all pertinent observations, and the nature of
the problems addressed. The details of all technical work performed under this contract will be
documented to permit full understanding of the methods and procedures used in creating the CVA
prototype.

1. Introduction

This report documents all technical work accomplished and information generated during
the performance of the project F30602-97-C-0117. Section 2 of this report, Subprojects,
is divided into three sections that represent each of the primary areas that we have
investigated. Each section contains rationale, experimental results, and conclusions for
the work performed in that particular area. Section 3 is the Project Summary, and serves
to tie together all of the research that we have performed under this contract. Section 4 is
a cross-reference that serves to tie together this report and the requirements outlined in
the Statement of Work that was specified in the contract. Section 5 contains a list of
papers and presentations that have resulted from the work conducted on this project.

2. Subprojects

This section of the report details the three subprojects that make up the bulk of the work
performed under this contract. Each subproject addresses a particular aspect of
Component Vulnerability Analysis that is essential to solving research problems in this
field. The first section, RIDDLE - The Random and Intelligent Data Design Library
Environment, explores technologies that are important for the automated testing and
security analysis of Commercial Off-The-Shelf (COTS) software components. RIDDLE
introduces the development of the grammar generator, the creation of data generators,
and the use of a flexible test framework that supports automated testing of COTS
software components. Results of using RIDDLE to test software libraries, command-line
utilities, and network daemons are presented.

The next section, NetHose - The Network Stack Testing Utility, discusses a prototype
tool that has been developed based on the same underlying concepts that came out of the
work performed on RIDDLE. This utility addresses the increasingly large concern over
Denial of Service (DoS) attacks that have become ubiquitous on the internet. NetHose
provides a way to test the robustness of an operating system's network stack when faced
with a deluge of valid and anomalous network traffic.

The final section, The Failure Simulation Tool (FST), describes the development and use
of a prototype that is used to examine the robustness of Windows NT applications under
anomalous environmental conditions. The FST accomplishes this by providing an
interface that allows the user to intercept function calls made from an application to any

of its Dynamic Link Libraries. An intercepted function call can be caused to fail,
simulating failures at the operating system level.

2.1 RIDDLE - the Random and Intelligent Data Design Library Environment

2.1.1 Motivation

An increasingly large number of mission critical applications are relying on the
robustness of Commercial Off The Shelf (COTS) software. The military, for one, uses
commercially available architectures as the basis for 90% of its systems1. Many
commercial products are not fully prepared for use in high assurance situations. The
testing practices that ordinary commercial products undergo are not thorough enough to
guarantee reliability, yet many of these products are being incorporated in critical
systems.

High assurance applications require software components that can function correctly even
when faced with improper usage or stressful environmental conditions. The degree of
tolerance to such situations is referred to as a component's robustness. Most commercial
products are not targeted for high assurance applications. These products, which include
most desktop applications and operating systems, have not been extensively tested for use
in mission critical applications. Despite this fact, many of these products are used as
essential components of critical systems.

Given the use of COTS software components in critical systems, it is important that the
robustness of these components be evaluated and improved. Studies, including Fuzz 2'3

and Ballista , have examined using automated testing techniques to identify robustness
failures5'6. Automated testing has the advantage of being low-cost and efficient, however
its effectiveness depends largely on the data that is used as test input. The input to a
component under test will determine which robustness failures (if any) will be
discovered, and which will remain hidden. It is therefore essential that high assurance
applications be tested with the most effective data possible.

This study examines two different approaches to generating data to be used for automated
robustness testing. The two approaches differ in terms of the type of data that is
generated, and in the amount of time and effort required to develop the data generation
routines. The first type of data generation that is discussed is called generic data
generation, and the second is called intelligent data generation. We will compare and
contrast both the preparation needed to perform each type of data generation, and the
testing results that each yield.

2.1.2. Related Work

Two research projects have independently defined the prior art in assessing system
software robustness: Fuzz2 and Ballista4. Both of these research projects have studied the
robustness of Unix system software. Fuzz, a University of Wisconsin research project,
studied the robustness of Unix system utilities. Ballista, a Carnegie Mellon University
research project, studied the robustness of different Unix operating systems when
handling exceptional conditions. The methodologies and results from these studies are
briefly summarized here to establish the prior art in robustness testing.

2.1.2.1 Fuzz

One of the first noted research studies on the robustness of software was performed by a
group out of the University of Wisconsin2. In 1990, the group published a study of the
reliability of standard Unix utility program2. Using a random black-box testing tool called
Fuzz, the group found that 25-33% of standard Unix utilities crashed or hung when tested
using Fuzz. Five years later, the group repeated and extended the study of Unix utilities
using the same basic techniques. The 1995 study found that in spite of advances in
software, the failure rate of the systems they tested was still between 18 and 23%3.

The study also noted differences in the failure rate between commercially developed
software versus freely-distributed software such as GNU and Linux. Nine different
operating system platforms were tested. Seven out of nine were commercial, while the
other two were free software distributions. If one expected higher reliability out of
commercial software development processes, then one would be in for a surprise in the
results from the Fuzz study. The failure rates of system utilities on commercial versions
of Unix ranged from 15-43%while the failure rates of GNU utilities were only 6%.

Though the results from Fuzz analysis were quite revealing, the methodology employed
by Fuzz is appealingly simple. Fuzz merely subjects a program to random input streams.
The criteria for failure is very coarse, too. The program is considered to fail if it dumps a
core file or if it hangs. After submitting a program to random input, Fuzz checks for the
presence of a core file or a hung process. If a core file is detected, a "crash" entry is
recorded in a log file. In this fashion, the group was able to study the robustness of Unix
utilities to unexpected input.

The causes of crashes were investigated by Fuzz researchers analyzing source code
provided by the commercial vendors in addition to the source code available through
freely distributed software. Errors that programmers made include pointer/array errors,
using dangerous input functions, errors in signed characters, and checking for the end of
file when reading input. For example, incrementing the pointer past the end of an array is
a common error made by many programmers. Also, the use of dangerous input functions
such as the gets() C function can result in program crashes. More insidious manipulation
of dangerous input functions can permit "stack smashing" attacks that allow the
execution of arbitrary program code embedded in user input. Another example of a
programmer error is assuming that the end-of-file character will always immediately

follow a newline character. User input may not necessarily follow this format. Though
the Fuzz study did not investigate the vulnerability of programs to buffer overrun attacks,
some of the gaps in robustness as measured by the Fuzz study may be exploitable in this
manner for security violations.

2.1.2.2 Ballista

Ballista is a research project out of Carnegie Mellon University that is attempting to
harden COTS software by analyzing its robustness gaps. Ballista automatically tests
operating system software using combinations of both valid and invalid input. By
determining where gaps in robustness exist, one goal of the Ballista project is to
automatically generate software " wrappers" to filter dangerous inputs before reaching
vulnerable COTS operating system (OS) software.

A robustness gap is defined as the failure of the OS to handle exceptional conditions4.
Because real-world software is often rife with bugs that can generate unexpected or
exception conditions, the goal of Ballista research is to assess the robustness of
commercial OSs to handle exception conditions that may be generated by application
software.

Unlike the Fuzz research, Ballista focused on assessing the robustness of operating
system calls made frequently from desktop software. Empirical results from Ballista
research found that read(), write(), open(),close(),fstat(),stat(), and select() were most
often called4. Rather than generating inputs to the application software that made these
system calls, the Ballista research generated test harnesses for these system calls that
allowed generation of both valid and invalid input.

Based on the results from testing, a robustness gap severity scale was formulated. The
scale categorized failures into the following categories: Crash, Restart, Abort, Silent, and
Hindering (CRASH). A failure is defined by the error or success return code, abnormal
terminations, or loss of program control. The categorization of failures is more fine-
grained than the Fuzz research that categorized failures as either crashes or hangs.

The Ballista robustness testing methodology was applied to five different commercial
Unixes: Mach, HP-UX, QNX, LynxOS, and FTX OS that are often used in high-
availability, and some-times real-time systems. The results from testing each of the
commercial OSs are categorized by the CRASH severity scale and a comparison of the
OSs are found in4.

In summary, the Ballista research has been able to demonstrate robustness gaps in several
commercial OSs that are used in mission-critical systems by employing black-box
testing. These robustness gaps, in turn, can be used by software developers to improve
the software. On the other hand, failing improvement in the software, software crackers
may attempt to exploit vulnerabilities in the OS.

The research on Unix system software presented in this section serves as the basis for the
robustness testing of the NT software system described herein. The goal of the work
presented here is to assess the robustness of application software and system utilities that
are commonly used on the NT operating system. By first identifying potential robustness
gaps, this work will pave the road to isolating potential vulnerabilities in the Windows
NT system.

2.1.3. Input Data Generation

Both the Fuzz project and the Ballista project use automatically generated test data to
perform automated robustness testing. The development of the data generators used by
the researchers working on the Ballista project clearly required more time than did the
development of the data generators used by researchers on the Fuzz project. This is
because the Ballista team required a different data generator for each parameter type that
they encountered, while the Fuzz team needed only one data generator for all of their
experimentation. The data used for command line testing in the Fuzz project consisted
simply of randomly generated strings of characters. These randomly generated strings
were used to test all of the UNIX utilities, regardless of what the utility expected as its
command line argument(s). Each utility, therefore, was treated in a generic manner, and
only one data generator was needed. We refer to test data that is not dependent on the
specific component being tested as generic data.

The Ballista team took a different approach to data generation. They tested UNIX
operating system function calls, and generated function arguments based on the type
declared in the function's specification. This approach required that a new data generator
be written for each new type that is encountered in a function's specification. Although
the number of elements in the set of data generators needed to test a group of functions is
less than or equal to the number of functions, this may still require a large number of data
generators. We refer to the practice of generating data that is specific to the component
currently under test as intelligent data generation.

2.1.3.1 Generic Data

The generation of generic test data is not dependent on the software component being
tested. During generic testing, the same test data generator is used to test all components.
This concept can be made clearer through an example. When testing command line
utilities, generic data consists of randomly generated strings. There are three attributes
that can be altered during generic command line utility testing. They are string length,
character set, and the number of strings passed as parameters. The same data generators
are used to test each command line utility. A utility that expects a file name as a
parameter will be tested the same way as a utility that expects the name of a printer as an
argument. The test data that the data generator produces is independent of the utility
being tested.

2.1.3.2 Intelligent Data

Intelligent test data differs from generic test data because it is tailored specifically to the
component under test. The example above can be extended to show the differences
between generic and intelligent data. Assume that the current command line utility being
tested takes two parameters: a printer name, and a file name. This would require the use
of two intelligent data generators (one for generating printer names, the other for
generating file names). The intelligent file name generator will produce strings that
correspond to existing files. Additionally it will produce other strings that test known
boundary conditions associated with file names. For example, on Windows NT there is a
limit of 255 characters as the length of a file name. The intelligent data generator will be
designed to produce strings that explore this boundary condition. Furthermore, the
generator might produce strings that correspond to files with different attributes (read
only, system, or hidden), or even directory names. The intelligent printer name generator
would produce input data that explores similar aspects of a printer name.

The purpose of using intelligent data generators is to take advantage of our knowledge of
what type of input the component under test is expecting. We use this knowledge to
produce data that we believe will exercise the component in ways that generic data
cannot. Intelligent testing involves combining the use of intelligent data generators with
the use of generic data generators. The reason that tests that combine intelligent data
with generic data will exercise more of a component's functionality is because the
component may be able to screen out tests that use purely generic data. This can be
explained by continuing the example of the command line utility that takes a printer name
and a file name as its parameters. If the first thing that this utility did was to exit
immediately if the specified printer did not exist, then testing with generic data would
never cause the utility to execute any further. This would hide any potential flaws that
might be found through continued execution of the utility.

2.1.4. The Experiment

In this experiment, we perform robustness testing of Windows NT software components.
The two types of components that we test are command line utilities, and Win32 API
functions. Both types of components are tested using both generic and intelligent testing
techniques.

2.1.4.1 Component Robustness

The IEEE Standard Glossary of Software Engineering Terminology defines robustness as
"The degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions." (IEEE Std 610.12.1990) Applying
this definition of robustness to the two classes of components that we are testing allows
us to make two claims.

1. Neither an application, nor a function, should hang, crash, or disrupt the system
unless this is a specified behavior.

2. A function that throws an exception that is not documented as being capable of
throwing is committing a non-robust action.

The first statement is a fairly straightforward application of the definition of robustness.
The second statement requires some more explanation. Exceptions are messages used
within a program to indicate that an event outside of the normal flow of execution has
occurred. Programmers often make use of exceptions to perform error-handling routines.
The danger of using exceptions arises when they are not properly handled. If a function
throws an exception, and the application does not catch this exception, then the
application will crash. In order to catch an exception, a programmer must put exception-
handling code around areas that he or she knows could throw an exception. This will
only be done if the programmer knows that it is possible that a function can throw an
exception. Because uncaught exceptions are dangerous, it is important that a function
only throws exceptions that are documented.

A function that throws an exception when it is not specified that it can throw an exception
is committing a non-robust action. The function does not necessarily contain a bug, but it
is not performing as robustly as it should. Robustness failures like this can easily lead to
non-robust applications.

2.1.4.2 Test Framework

To perform our automated robustness testing we began by developing a simple test
framework (Figure 1). The framework consists of four important components: the
configuration file, the execution manager, the test child, and the data generation library.

Execution Manager /^ Qetimäon>
\ Library j

Test Executor X. 1 r
Test Child

Test Monitor

^\ /

*r

Figure 1: Testing Framework

The configuration file specifies what is being tested, and where the test data will come
from. It is a flat text file that is read in one line at a time. Each line includes the name of
the component to be tested, and the names of the data generators that should be used to
supply the input for each parameter. Each parameter that is required by the component
under test is specified individually. This is an example of what a line of the configuration
file might look like during intelligent testing. In this example, the utility "print" expects
the name of a printer followed by the name of a file.

print SPRINTER $FILENAME

Here is what a line from the generic testing configuration file might look like:

print SGENERIC SGENERIC

The data generation library contains all of the routines needed for generating both generic
and intelligent data (these are called data generators). Each data generator generates a
fixed number of pieces of data. The number of data elements that a data generator will
produce can be returned by the data generator if it is queried. The data element that a
data generator returns can be controlled by the parameters that are passed to it.

The test child is a process that is executed as an individual test. In the case of the
command line utilities, the utility itself constitutes the test child. When testing the Win32
API functions, however, the test child is a special process that will perform one execution
of the function under test. This allows each run of a function test to begin in a newly
created address space. This reduces the chance that a buildup of system state will affect a
test.

The execution manager is the heart of the framework. It is responsible for reading the
configuration file, executing a test child, and monitoring the results of the test. After
reading a line from the configuration file, the execution manager uses functions in the
data generation library to determine how many tests will be run for a component. This
number represents all possible combinations of the data produced by the specified data
generators. For example, the line from the intelligent testing configuration file mentioned
above specifies one file name generator, and one printer name generator. If the
SFILENAME data generator produces 10 different values, and the SPRINTER data
generator produces 5 values, then the execution manager would know that it has to run 50
(10x5) test cases. The execution manager then prepares the test child so that it will
execute the correct test. Finally the execution manager executes the test child.

The test monitor is the part of the execution manager that gathers and analyzes the results
of an individual test case. The test monitor is able to determine the conditions under
which the test child has terminated. Some possible ends to a test case include the test
child exiting normally, the test child not exiting (hanging), the test child exiting due to an
uncaught exception (program crash), and the test child exiting due to a system crash. In
the event of a system crash, after restarting the computer the testing framework is able to
continue testing at the point that it left off. The results that the test monitor gathers are

10

used to produce a report that details any robustness failures that were detected during
testing.

This framework enables us to configure a set of tests, and then execute them and gather
the results automatically. The results are stored as a report that can easily be compared to
other reports that the utility has generated.

The complete functionality of the test framework is most easily managed through its
Graphical User Interface. The GUI can be used to configure and automatically execute a
set of test cases, as well as to produce results reports. Status bars, including those that
can be seen in Figure 2, give the tester an idea of how many tests have been run, and how
many are remaining. The results of the testing are computed on the fly, and can be
viewed in the results window even before all tests have completed. The reports manager,
shown in Figure 3 (next page), is used to analyze the results of more than one experiment.
It enables the user to select any number of previously generated reports and combine
them into a comprehensive report suitable for experimental results comparisons.

* -

Pwgress Monitors

JQJX|

DU. API Testing Results B»owser

M
10«utof41?te>c8ons»stefJ, :

1V11
4 but of 10 tunetesrts ieted

Oirect ftesults Viewer

Save Results

Report Manager

Ctese

KERKEt32.dn : AlloeCoasole

REBMEt32.dll : BackupRaad

KESNEL32.dll t BackttpSeek
total Tests; 0

REBMEt3Z.äll : BockujiWritS!
;l||;Tatal Tösts: 0

KEjasJEt3S;.<ill : Begj»Up4at«R9':n';rrpA
ACCESS_VIOLATIOH, Fwiqusncy: 78
NO EXCEPTION ÖENEFATED. Frequency; 91

m: J
RepodView ff DtreöFteutte <~ Si

Figure 2: Win32 API Function Testing GUI - Test configuration screen

11

DU. APt Tesfirtg

DU.API Taring Report Meneger

-RawiU»»--

''■'.-' hputRhwQnorel«)

_ heart 1

'1

|leb\k3c_0 re3ult
Iab\k32 Jtesuh

Data» |

Options

Generate

■ 50V0

Oo*e

Wr 1 tePi-of 11 »Sect lonA
Wr lteProfileSöctlonW
WriteProfiloStringA
WriteProfileStringW
WriteTapemark

(0/1) (114 / 169)
(0 / 1) (120 / 169)
(0 .' 1) (1698 •' 2197)
(0 .' 1) (1770 •' 2197)
(0/1) (2197 / 17576)

Test Group 0:
functions:

tests:
51 / 321 failed (15.89*).
51 / 321 failed (15.89*) .

Test Group 1:
functions: 254 / 321 failed (79.13*).

teste: 499250 / 95-1208 failed (52.32*).

J
Figure 3: Win32 API Function Testing GUI - Report manager screen

2.1.4.3 Win32 API Function Testing

The Win32 API is a set of functions that is standard across the Windows NT, Windows
95/98, Win32s, and Windows CE platforms (although not all functions are fully
implemented on each of these platforms). These functions are located in Dynamic Link
Libraries (DLLs), and represent a programmer's interface to the Windows operating
system. For this experiment, we chose to concentrate on three of the most important
Windows DLLs: USER32.DLL, KERNEL32.DLL, and GDI32.DLL. The USER32 DLL
contains functions for performing user-interface tasks such as window creation and
message sending, KERNEL32 consists of functions for managing memory, processes,
and threads, and GDI32 contains functions for drawing graphical images and displaying
text7.

2.1.4.3.1 Generic Win32 API Testing

The generic data generators that we used for testing the Win32 API functions were all
integer based. This was done because all possible types can be represented through
integers. For example, the char * type (a pointer to an array of characters) is simply an
integer value that tells where in memory the beginning of the character array is located.
The type float is a 32 bit value (just like an integer), and differs only in its interpretation
by an application. Since the premise behind generic data generation is that there is no
distinction made between argument types, the generic data generator used during the
Win32 API testing generates only integers.

12

The generic testing that we performed on the Win32 API was done in three stages
(referred to as Generic 0, Generic 1, and Generic 2). These stages are distinguished by
the sets of integers that we used. Each set of integers is a superset of the previous set.
The first set of integers that we used consisted only of { 0 }. The second consisted of {-
1, 0,1 }, and the third contained {-231, -215, -1, 0,1, 215 -1, 231 -1 }. A test consisted of
executing a function using all combinations of the numbers in these sets. For example,
during the first stage of testing we called all of the functions and passed the value zero as
each of the required parameters (resulting in only one test case per function). The second
stage of testing consisted of running 3X test cases, where x is the number of parameters
that the function expects. The final stage of testing required 7X test cases. Due to the
time intensive nature of the testing that we are conducting, we limited our experiment to
test only functions that contained four or fewer parameters (a maximum of 7 = 2401
tests per function during generic testing).

2.1.4.3.2 Intelligent Win32 API Testing

Intelligent testing of the Win32 API involved the development of over 40 distinct data
generators. Each data generator produced data that is specific to a particular parameter
type. One data generator was often capable of producing multiple pieces of data related
to the data type for which it was written. Furthermore, each intelligent data generator
also produced all of the data items output by the third generic data generator. An
example of an intelligent data generator is the data generator that produces character
strings. In addition to the data produced by the third generic data generator, this data
generator produces a number of valid strings of various lengths and the null string. Other
examples of Win32 API intelligent data generators are those that produce handles to files,
handles to various system objects (i.e., module handles), and certain data structures.

2.1.4.3.3 Win32 API Testing Results

The results of both the generic and intelligent Win32 API experimentation are
summarized in Figure 4. The bars represent the percentage of functions that
demonstrated robustness failures. The robustness failures that are charted are almost
entirely due to exceptions that the functions are throwing. Any one of these exceptions
could cause an application to crash if they are not caught. The most common exception
that we found (representative of an estimated 99% of all exceptions) is an
ACCESSVIOLATION. This is a type of memory exception that is caused by a program
referencing a portion of memory that it has not been allocated. An example of this would
be trying to write to a null pointer. "Access violations" frequently occur when an
incorrect value is passed to a function that expects some sort of pointer. The number of
functions that throw access violations when they are passed all zeros underscores this
point. Keep in mind that the undocumented throwing of an exception does not
necessarily indicate that a function contains a bug, however this is often not the most
robust course of action that the function could take.

13

90°/o

80°/o

= 70°.o

= 60»o

50%

40°'o

» 30<Vo

20»

10« o

0°ö

a Generic 0
□ Generic 1
■ Generic 2
M Intelligent

User32 Kernet32 GDI32

Figure 4: Win32 Function Testing Results

There were 321 USER32 functions tested, 307 KERNEL32 functions tested, and 231
GDI32 functions tested. In the analysis that we present here, we focus on the number of
functions in each DLL that demonstrated robustness failures. There are a couple of
reasons that we chose to concentrate on the number of functions that had failures, not the
number of failures per function. One reason for this is that a function only has to suffer a
robustness failure once to potentially harm a mission critical system. If it can be shown
that a function is capable of failing in at least one circumstance, then the robustness of
this function is called into question.

Another reason for focusing on the percentage of functions that failed, not the percentage
of failures per function, is that the number of tests that are run for each function is
subjective. This subjectivity arises from the development of the data generators. There is
no practical way to write a data generator (generic or intelligent) that will produce an
exhaustive set of tests. Look, for example, at the intelligent data generator that produces
strings. We use this generator to produce a number of strings of varying lengths. There
is, however, a near infinite number of string lengths and character patterns that we could
produce. Instead of attempting to exhaustively generate all of these possibilities (an
intractable task), we instead select a small sampling of strings that we hope will test a
function in different ways.

The way that this subjectivity could affect our data gathering is if we examine the number
or percentage of failures per function. We would not even be able to give an accurate
percentage of failures on a per function basis. If function X fails 50% of the time when
tested with the data used during the third round of generic testing, we could easily add or
remove data values to alter this percentage. What is most important to us is not the
number of times that we can cause a function to fail, but whether or not a function failed
during our testing.

14

Each progressive level of testing, from Generic 0 to intelligent, is a superset of the
previous testing level. Generic testing accounted for over 60% of the exceptions found in
each of the three DLLs tested. Notice that the percentage of functions that fails rises
sharply between the first and second rounds of generic testing, and then again between
the third round of generic testing and the round of intelligent testing. These results
indicate two things to us. First, they show that despite its simplicity, generic testing is a
worthwhile activity. Second, the results indicate that intelligent testing is a more
comprehensive, and thus necessary part of automated robustness testing.

The process of setting up the generic tests that we conducted on the Win32 API functions
was a fairly inexpensive task. The generic data generators that we used were simple to
design and implement. Additionally, it appears that further expanding the sets of integers
used during generic testing will not bring many new results. As the set of integers was
changed from three elements to seven elements, the number of additional functions that
failed was zero for KERNEL32 and GDI32, and only two for USER32. The generic data
generation approach to automated testing could certainly be valuable to a tester that
simply wanted to take a first step towards evaluating the robustness of a set of functions.

The significant increase between the number of functions found to exhibit robustness
failures during generic testing, and the number of functions found to fail during
intelligent testing underscores the importance of intelligent software testing. This data
supports the claim that as the level of intelligence that is used during testing increases, so
does the number of problems discovered. For critical systems, this indicates that a
significant amount of time and effort needs to be put into software testing.

As a final note, we found a number of serious operating system robustness failures during
the testing of GDI32 and KERNEL32. Each of these DLLs contains a few functions that
were capable of crashing the operating system. All of these operating system crashes
occurred during intelligent testing. These OS crashes are significant because they
represent robustness failures that could not be trapped by an application in any way.
They are dangerous because they could either occur accidentally during normal system
use, or could be caused intentionally by a malicious user (as in a Denial Of Service
attack).

2.1.4.4 Win32 Command Line Utility Testing

For the second part to this experiment, we performed automated robustness testing of a
number of Windows NT command line utilities. The primary difference between this
experiment and the testing of the Win32 API functions is that we are now testing
complete applications, not operating system functions. The utilities that we tested
consisted of both a group of programs that are native to the Windows NT operating
system, and a group of programs that were written by Cygnus for use on the Windows
NT platform. Many of the command line utilities that we tested are analogous to the
UNIX utilities tested by the researchers on the Fuzz project.

15

2.1.4.4.1 Generic Command Line Utility Testing

The generic data generators that we used for testing the command line utilities were all
string based. The parameters that command line utilities accept are always read from the
command line as strings. Therefore, if a command line utility expects an integer as a
parameter, it reads these parameters as a string (e.g., "10") and then converts it to the type
that it requires.

There is another fundamental difference between the Win32 API function testing and the
command line utility testing that we need to address. All of the functions that we tested
accepted a fixed number of parameters. Many command line utilities will accept a
varying number of parameters. Parameters are delimited by blank spaces. Instead of
only judging whether or not a command line utility exhibited any robustness failures, we
chose to distinguish between test cases that involved different numbers of parameters.
Due to resource considerations, we limited the number of parameters that we would test
to four.

The following is an example of what the configuration file for the command line utility
"comp" looks like:

comp $GENERIC
comp SGENERIC $GENERIC
comp $GENERIC $GENERIC SGENERIC
comp $GENERIC $GENERIC $GENERIC SGENERIC

We refer to each of these lines as a template. Each utility is tested using 1, 2, 3, and 4
parameters, for a total of four templates. The generic data generator for the command line
utility testing produced strings of varying lengths and character sets. The character sets
that were used included alphanumeric, printable ASCII, and all ASCII except the null
character. The null character (ASCII value 0) was avoided because it could be
interpreted as the end of a line. Additionally, none of these strings contained spaces, so
they should not be misinterpreted as representing more than one parameter.

2.1.4.4.2 Intelligent Command Line Utility Testing

The intelligent data that was used as parameters to the command line utilities was based
on syntactic and semantic information gathered from documentation for each utility.
Although the data generators produce only strings, the strings that they produce have
semantic meaning. For example, an intelligent data generator that produces file names
chooses names of files that actually exist. There exist other data generators that produce
strings corresponding to integers, directory names, printer names, etc. In addition to
using these intelligent pieces of data, intelligent testing involved running test cases that
combined intelligent data with generic data.

16

2.1.4.4.3 Command Line Utility Testing Results

Tables 1 and 2 summarize the results of the command line utility testing. The data
represents the number of templates that exhibited robustness failures (out of a possible
four). The robustness failures charted here are due to the application abnormally
terminating due to an uncaught exception that was thrown within the application. As
stated earlier, an exception, such as those examined in the Win32 API function testing
portion of this experiment, can cause an application to crash if it is not handled properly.

Robustness Failures Discovered in Microsoft NT Utilities

Generic Intelligent
findstr 3/4 4/4
xcopy 3/4 4/4
expand 2/4 3/4
comp 0/4 1/4
ftp 0/4 1/4
ping 0/4 0/4

Table 1: Results from native Windows NT command line utility testing

Robustness Failures Discovered in Cygnus GNU Win32 Utilities

Generic Intelligent
diff 2/4 3/4
gunzip 2/4 2/4
Is 2/4 3/4
cp 2/4 3/4
od 2/4 3/4
grep 2/4 2/4

Table 2: Results from testing Cygnus Windows NT command line utilities

The experimental results that we have gathered during the command line utility testing
appear to support the conclusions that we came to after analyzing the Win32 API
function testing. Simple generic testing was able to uncover robustness failures in a
significant number of the utilities that we tested (9 out of 12). Intelligent testing was able
to uncover two additional utilities that contained robustness failures.

Intelligent testing also proved to be better than generic testing at discovering more
robustness failures for each utility. In all but three of the twelve utilities tested,

17

intelligent testing resulted in more failed templates than generic testing. Only one of the
tested utilities did not demonstrate any robustness failures.

tW),is*xnen

MicrosoftaO Uindous NKTf1>
<C> Copyright 1985-1996 Microsoft Corp.

C:\>dir f*
Uolunc in driue C has no label.
Uolune Serial Nuriber is K089-2D2D

Directory of C:\

file Not Found

C:\>conp filel.txt iaaaaaaaaaaaaaaaaaaaaaaaa<:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a aa e
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Can't find/open file: filel.txt

Compare nore files <V/N> ? n

C:\>toucli filel.txt

C:\>dir f*
Uolune in drive C lias no label.
Uolune Serial Nunber is BB8V-2B2D

Directory of C:\

09/2 3/98 08:17a
1 File<c>

0 filel.
0 bytes

1,503.386,624 bytes

in filel.txt ja
aaaaaaaaaaaaaar a < ■

a a a a a a a a a a a
aaaaaaaaaaa

a a a a a a a a a a a a a a a c
it>,i<ki a a a a a a a a <:

comp-exe -Application Error

The instruction at "0x7492bf14" referenced memory a» "OxOOOOOOOc". The memory
could not be "read".

Cfick on OK to terminate the application
CBck on CANCEL to debug the application

OK | Cancel |

Figure 5: Screen capture of a robustness failure discovered in the native Windows NT
command line utility comp.

Figure 5 contains a screen capture of a robustness failure that we discovered in the native
Windows NT utility comp. This particular failure occurs only when the first parameter is
a valid file name and the second parameter is a buffer of approximately 250 characters.
This is an example of a robustness failure that could not be detected using only generic
testing because it only appears when the first parameter is the name of an existing file.

18

Exceptions Generated During Command Line Utility Testing

12

10

H Utilities

65-127 33-127 1-255

Character Sets

0-255

Figure 6.

A further breakdown of these experimental results shows that the vast majority of the
exceptions occurred when the character set being used for string generation was in the
range (1,255) (excluding the NULL character). This is shown in Figure 6, which depicts
the percent of test cases that resulted in exceptions. This pattern is most likely due to the
program's interpretation of special characters. The number of exceptions decreases
dramatically when the character set is altered to include the null character, or when it
consists only of printable characters in the range (33,127). The null character may be
interpreted as the termination character of a string, effectively limiting the length of the
input. This would explain why there are fewer unhandled exceptions when this character
is used in light of the correlation between length and exceptions (see Figure 7). Another
possibility is that if the null character is interpreted as either the end of a string or the end
of the parameter list, then the parameters may no longer constitute a valid use of the
application and the utility may immediately reject the test case.

Clearly, these command-line utilities are most vulnerable to input that is sampled from
the character set range (1,255). This set includes every printable and non-printable
character except for the NULL character. Even very long length input in the alphabetical
and printable set resulted in few exceptions. Instead, it is the combination of very long
length with nearly the entire range of the character set (including non-printable
characters) that resulted in the most unhandled exceptions. The most significant trend in
the data collected from these tests is the increase in unhandled exceptions as the length of
string increases as illustrated in Figure 7.

The graph of the exception ratios show that as the length of input is increased from 8 to
4096 bytes, the number of exceptions rises dramatically indicating a failure to handle
anomalous input within proper input grammar. Significantly fewer exceptions occurred
when the length of the string used was either 8 or 250 characters. Because the exception
that occurred most often was a memory access violation, the cause is most likely an over-
written buffer that placed an illegal pointer on the program stack. In other words, the

19

instruction pointer that was overwritten with the long input probably points to a region of
the memory that is inaccessible for the program, or it may point to data that is not a valid
instruction opcode. This result points to potential vulnerabilities in these utilities to buffer
overrun attacks. Buffer overrun attacks are one of the most significant security-related
flaws that are most often exploited in practice8'9. The Fuzz study also pointed out the
relative vulnerability of programs to unconstrained input3. However, the assertion that
these programs are vulnerable to buffer overrun attacks has not been investigated in this
study.

Exceptions Generated During Command Line Utility Testing

I Command Line
Utilities

250 800 1500 4096

String Length

Figure 7.

2.1.4.5 The Grammar Generator

The grammar generator takes a different approach to producing valid and anomalous data
than the techniques presented above. Specifically, the grammar generator addresses the
fact that the subject being tested may not take a fixed number of inputs. The grammar
generator requires that the user is able to specify the inputs to the test subject, and then it
can produce streams of data that conform to these specifications.

2.1.4.5.1 Grammar Generator Theory

The ability to generate intelligent input is essential for the type of stress testing necessary
for robustness assessment. The simplest form of testing involves generating random
streams of data that are used by the program being tested; this was done in the Fuzz
project. While random input generation can test the ability of a program to handle non-
conforming input, it typically will not exercise much of a program's functionality. Testing
applications with syntactically correct data will result in more thorough testing ofthat
application than testing with purely random data. For example, many applications that

20

take command line arguments will immediately terminate if they do not receive the
correct number of parameters, or if they receive an invalid flag. In this situation, random
testing will not test any further into the program than this initial check.

On the other hand, syntactically correct arguments (or input parameters) will result in
more of the application being tested. In order to exercise more of a program's
functionality and to test more of the function's response to anomalous input, we have
supplemented RIDDLE with a grammar-based input generation component. With the
creation of a grammar-based input generation component, RIDDLE can test software
with syntactically correct data that contains unexpected, anomalous input. The anomalous
input itself will be generated through function calls to the data generation library.

The grammar generator takes a grammar specification as input, and produces random, yet
syntactically correct, strings of data by employing functions from the data generation
library. The goal of this approach is to produce input that is closer to being valid than
that produced through the template method that has been discussed above.

The data generation library can be used to generate data with a variety of levels of
intelligence. When testing an application that takes a file name as a parameter, the data
generation library can be used to produce a number of substitutions for this parameter. In
the case of a file name, the data generation library can produce the name of an existing
file, a valid file name that doesn't exist, an invalid file name, the name of a file with
specific permissions set, an extremely long file name, or otherwise. Each of these
possibilities results in a different test case that may exercise the application being tested
in a new way.

2.1.4.5.2 Architecture

The grammar specification is defined in two parts. The first part is a definition of the
grammar written in a format similar to Backus-Naur Form (BNF). The second part is a
file that contains definitions of all of the tokens used in the grammar. RIDDLE begins by
parsing the grammar definition and checking that it is syntactically correct. Next,
RIDDLE begins the process of generating data based on the grammar that it has read.
The data that RIDDLE generates relies on the terminal definitions that have been
supplied in the token definition file and the functions called from the data generation
library.

For each program being tested, the grammar definition must be created. The definition
declares the format for the input that is syntactically correct for exercising the program
under test. Each production, or rule, consists of a left-hand side and a right-hand side,
separated by a colon. The left-hand side identifies a single non-terminal. The right-hand
side of the production identifies a set of non-terminals and tokens that the non-terminal
on the left-hand side can reduce to. A single non-terminal could have a number of choices
of reductions. In this case, each reduction is separated by the symbol "|"- Tokens are
productions that reduce only to a single terminal (they are therefore only one step away
from being terminals themselves). In RIDDLE's case, terminals always reduce to a

21

string. The terminal that a token reduces to is specified separately from the grammar
definition in the token definition file.

The following simple grammar is equivalent to the regular expression (a)*b, or any
number of a's followed by a single b (i.e.}, b, ab, aab, etc).

Grammar Definition

START
START:

1
B
A

Token Definitions

A: "a"
B: "b"

RIDDLE always begins with the first production rule that is given. All possible
syntactically correct sentences must begin from this production. In this example, the
production that defines the non-terminal START is the starting production. When
reducing the non-terminal START, the data generator has a choice of picking either the
production rule that results in token B (in the example above), or the production rule that
results in the token A followed by the non-terminal START. The data generation
component uses a repeatable random number generator to choose between the production
choices that it faces. Additionally, RIDDLE provides a means of weighting the choice of
production rules. This probability is specified by adding a weight to the end of a
production. The START production could be written as:

START: B 1
I A START 3

This grammar definition indicates that the chance of non-terminal START reducing to A
START is 3 times more likely then it reducing to B. Or in other words, there is a 75%
chance that it will reduce to A START and a 25% chance that it will reduce to B.

When the grammar-based data generation component is called upon to produce
syntactically correct data it begins with the starting production. It then chooses
productions at random (taking into account the probabilities that were added) until all of
the non-terminals have been reduced to tokens. For example, the grammar above might
produce the string of tokens AAAAB. The final step of the process is to reduce the
tokens to their values. In our example, A reduces to the string "a" and B reduces to
string "b", giving us the string "aaaab". The data that is produced will be syntactically
correct with respect to the grammar that was used to create it.

RIDDLE allows the user to specify that a token reduces to either a string literal, or a
function that returns a string literal. In the previous example, token B reduced to the
string literal "b". The user could specify that token B reduce to the function call

22

RandomFileName (). This function could return a string that would be used in place
of the token B (e.g., the choices of file names that were mentioned earlier). This is how
RIDDLE is able to generate data that will serve as anomalous program input. The
functions that can be used in the reduction of a token make up the data generation library.
This library will contain functions that reduce to numerous user-specified strings that can
be used for testing purposes.

RIDDLE is designed to test two types of applications: those that take input from the
command line, and those that take streams of data as input. The former class of
applications includes many commonly used operating system utilities. Examples of such
Unix utilities include the cp, Is, man, and ps commands. Windows NT examples
include mode, tree, subst, and format. Applications that rely on streams of data
include Web servers (httpd), ftp servers, ftp clients, lpr, and grep.

A simplified example of testing the UNIX utility cp can be demonstrated. This grammar
definition only accounts for a small subset of the command's functionality, but it is useful
for illustrative purposes.

Grammar Definition

START: SP
I SP
I SP

LOW_F START
LOW_P START
FILE_NAME FILE_NAME

Token Definition

LOW F: "-f"
LOW_P: "-p"
FILE NAME: Genera
SP: " "

teFileName()

This grammar specification will provide for the production of an input string that consists
of any number of-f s and -p's followed by two strings produced by the
GenerateFileName() function. The input strings that are produced could then be used in
test cases. The following are some test cases that RIDDLE might produce:

cp -p oaisud aoisudf
cp -p -f -p -p <existing file> <existing directory>
cp -f -p <open file> <extremely long buffer of characters>

These test cases are syntactically correct usages of the cp command, combined with
anomalous data. If the anomalous data that is supplied by the data generation library
results in undesirable application failure, then a weakness in the robustness of the
application has been detected.

23

2.1.4.5.3 Command-Line Utility Testing with the Grammar Generator

As discussed, the grammar generator is useful for producing input that can be used to test
components that accept an arbitrary number of inputs. We used the grammar generator to
produce input strings to test command-line utilities and network daemons. The first step
to this process was to produce grammar definitions and token definitions for the
components to be tested. The grammar definitions that were used to test command-line
utilities were developed from the usage documentation for these utilities. The grammar
definitions for the network daemons that we tested were available as BNF definitions
from developer documentation that is publicly available.

We ran tests on the same set of Microsoft and GNU utilities that we tested using the
template approach (section 2.1.4.4). The number of test cases that can be produced for
each utility using the grammar generator is completely arbitrary. The length of the input
strings that are generated is also arbitrary. Because the nature of this testing is so
subjective, we simply chose to run a number of test cases that fell within the time
constraints that we had set for this testing.

MS
Utilities

Exceptions
Generated

Findstr Yes
Xcopy Yes
Expand Yes
Comp Yes
ftp Yes
Ping No

Table 3.

GNU
Utilities

Exceptions
Generated

Diff Yes
Gunzip Yes
Ls Yes
Cp Yes
Od Yes
Grep Yes

Table 4.

Tables 3 and 4 show the results of the tests that we ran on the command-line utilities.
This table indicates whether or not the utility being tested threw any exceptions during
the test period. It would not be scientifically valid to calculate the percent of failures
during these tests because the number of test cases is arbitrary. The results of the tests

24

that were produced using the grammar generator match those gathered through the
template testing discussed in section 2.1.4.4. The same utilities that displayed failures
during the intelligent template testing failed during testing with the grammar generator.
This indicates that the template testing that we performed was able to achieve comparable
results to the grammar generator testing, with significantly less work required. To
strengthen this claim, we would need to considerably extend the range of utilities that
were tested using each approach. Due to the amount of effort required for this
experimentation, we have not performed such validation at this time.

2.1.4.5.4 Network Daemon Testing with the Grammar Generator

The network daemons that we tested were web servers and ftp servers. The first step
towards testing these applications was to modify RIDDLE so that it could transmit data
across a network. The watchdog process was removed, because the application being
tested was no longer local to the machine running RIDDLE. Instead of putting a
watchdog process on the remote machine, RIDDLE looked for application failures by
periodically verifying that the daemon being tested was still responding correctly. With
these modifications in place, RIDDLE was now able to perform the remote testing of
network daemons.

For the web server testing, we worked from a BNF grammar that was obtained from a
public distribution. The grammar files that we used for web server testing were
significantly more complicated than those used for the testing of command-line utilities.
We then wrote a token definition file that contained the data generators that we were
interested in using.

The web servers that were tested are Microsoft's Internet Information Server 3.0 (IIS)
and the APACHE Web Server. Although we subjected these servers to extensive testing,
we were unable to find any robustness problems with either server. This is likely due to
years of bug fixes and application hardening that these applications have gone through.
A robustness flaw in a web server would be a major problem for any company that relies
on the availability of their web server. When such flaws are found, they are often
exploited as Denial of Service attacks by malicious users in the computer community.
Developers of web servers must remain diligent in fixing any robustness flaws that are
discovered in their product.

The grammar definition files that were used for the testing of the file transfer protocol
servers (FTP servers) were also based on publicly available specifications. The FTP
servers that were tested are Microsoft's IIS 3.0 and Solaris' f tpd. The testing of these
servers did not result in any robustness failures. Once again, these are essential
applications that are generally accessible to anyone that is connected to the internet.
Years of exposure to network attacks have resulted in robust applications that are good at
handling anomalous network traffic.

25

2.1.5. Conclusions

The experimental results of both the Win32 API function testing and the Windows NT
command line utility testing demonstrate the usefulness of performing automated
robustness tests with generic data, as well as the importance of using intelligent
robustness testing techniques. Despite its simplicity, generic testing has proven to
provide valuable results in both halves of this experiment. Automated generic testing is
an inexpensive yet useful testing technique.

Intelligent testing uncovered more robustness failures for both the automated Win32 API
function robustness testing, and the automated Windows NT command line utility testing.
These results verify that more intelligent testing techniques uncover more robustness
failures. Furthermore, intelligent testing uncovers robustness failures that could never be
discovered using only generic testing (as described in the example of the comp utility).

The desire to build fault tolerant computer systems using commercial software
necessitates better testing of software components. This involves the testing of both
existing components, and of the system as a whole. The experiment conducted indicates
that automated robustness testing using generic testing techniques can yield impressive
results, but that mission critical applications will require significantly more intelligent
testing.

26

2.2 NetHose - A Tool for Testing the Robustness of the Network Stack

2.2.1. Introduction

The networking of computers is largely responsible for the revolutionary effect
computers have had in the workplace and in our lives. Before Microsoft Windows, most
personal computers running MS-DOS were standalone systems. Today, almost every
computer system is networked with other computer systems, with the ultimate network
being the Internet. The software that implements the TCP/IP protocol used by the
Internet is called the network stack. The network stack software is a critical component in
the operating system (OS), and by extension, to the national information infrastructure
(Nil). It is the portion of the OS that processes network packets before and after network
services receive and send them. Since the internet is becoming more homogenous than
ever, a flaw in the network stack of one of the dominant platforms can leave a large
portion of the Nil vulnerable to attack. Thus, in order to assure survivability of the
critical Nil, we must ensure that the network stack software is robust to anomalous
conditions or malicious attack.

In this section of the report, we discuss our approach and describe a tool that tests the
robustness of the network stack software to anomalous conditions and malicious attack.
The approach is based on our previous work in testing the robustness of OS software by
using combinations of valid and invalid input, as described in section 2.1. The key
distinction, however, is that this section describes the application of these techniques
towards a tool for generating anomalous network packets in order to test the robustness of
OS networking software.

The importance of this work is in developing structured approaches to testing critical
portions of the software that composes the NIL In addition, a structured approach to
testing enables scientific study of the robustness of the platform. One of the key problems
in developing a survivable Nil is the robustness of a given platform to denial of service
attacks. Vulnerability to denial of service attacks is the Achilles heel of today's Internet.
There are an increasingly large number of Denial of Service attacks that are publicly
available on the Internet, and OS vendors are scrambling to release patches preventing
known attacks. Fundamental problems in the design of network protocols can leave all
network implementations vulnerable. However, more pervasive than design flaws, are
software implementation flaws, or bugs. Flaws in the networking software can leave a
platform vulnerable to misuse of network services or to malicious attack. The goal of the
approach developed here is to test the network stack for robustness to these types of
unusual conditions in order to identify flaws in the platform that leave it vulnerable. The
testing approach and tool described here applies equally to any software platform that is
networked, however, results from applying the tool to the Win32 platform are presented
here.

27

2.2.2. Approach

One possible approach to examining the network stack for weaknesses would be to
perform a thorough analysis of the operating system's source code. This is a software
engineering task that the vendor should perform prior to releasing the system. We are
interested in determining the robustness of network stacks for COTS software. With the
notable exception of Linux, most OS vendors choose not to make the source code to their
operating systems available. As a result, we must use an approach that is source code
independent.

Another technique that could be used for network stack analysis is a black-box approach.
The traditional black-box approach to testing involves generating inputs with respect to
functional specifications (not source code) and analyzing the output. This technique has
the advantage of not requiring any operating system source code, and therefore being
platform independent. The biggest issue with this type of testing will be the generation of
test data, and the analysis of the results.

The approach taken here is a black-box testing approach, but rather than generating
inputs to perform functional testing, we generalize combinations of valid and invalid
inputs to test robustness. The IEEE Standard Glossary of Software Engineering
Terminology defines robustness as "the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environmental conditions"
(IEEE Std 610.12.1990).

Central to this approach is the design of data generator units that can continually produce
test data according to our robustness testing criteria. The NetHose testing tool provides a
framework that makes use of data generators to produce an automated network stack
testing tool.

It is important to note here that we are not testing the OS to determine how robust it is
under heavy load conditions. This approach is known as stress testing or load testing,
and several commercially available tools exist for this purpose. We will concern
ourselves only with testing how robust the network stack is to anomalous input.

2.2.3. Network Stack Overview

To develop our technique for testing the network stack, it is first necessary to garner a
better understanding of the inner workings of the network stack. Simply put, the network
stack is the portion of the operating system that makes inter-computer communication
possible.

The implementation of the TCP/IP protocol suite in the operating systems is often
referred to as the network stack. This is because the protocol headers are pushed onto a
message during sending and then popped off during receiving (demultiplexing).
Conceptually, most network stacks are loosely based on the 7 layer OSI model, but can
easily be depicted as having 4 layers (Figure 8).

28

Application Application

—Z\

\7
Transport Layer Transport Layer

7\

lz
Network Layer Network Layer

7Y

\7
Link Layer c* Link Layer

Physical Network

Figure 8. Path of Data through the Network Stack

When an application wishes to send a message across a network, a stack of 3 headers is
placed onto that message by the OS. First a transport layer header describes how the data
should appear to be transmitted from application to application. Then a network layer
header maps out how the data should travel across the network. Finally, a link layer
header describes the physical details of interfacing the cable. TCP and UDP are the two
most common transport level protocols, and IP is the underlying network layer protocol.

2.2.3.1 Protocol Headers

16-bit
source port number

16-bit
destination port number

32-bit
sequence number
32-bit
acknowledgement number
4-bit
hdr length

6-bit
reserved

6-bit
flags

16-bit
checksum

16-bit
window size
16-bit
urgent pointer

Figure 9: The TCP Header

The TCP protocol provides for a reliable and connection-oriented byte stream service.
By storing select information in the protocol headers (Figure 9), TCP provides for such
properties as data integrity and port delivery. For instance, it ensures the integrity of the
data by computing an end-to-end checksum and then storing it in the header. For packet
delivery, however, TCP relies on a network level protocol, namely IP.

29

16-bit
source port number
16-bit
datagram length

16-bit
destination port number
16-bit
checksum

Figure 10: The UDP Header

The UDP protocol, also a transport layer protocol, provides an unreliable datagram
service. It has only a few special properties: port delivery, and data integrity. To provide
these services, UDP stores information in the header (Figure 10). It stores, for instance, a
destination port number and an end-to-end checksum in the header, however it does not
provide for re-transmission of lost packets.

4-bit
version

4-bit
hdr length

8-bit
type of service

16-bit
total length

16-bit
identification field

3-bit
flags

13-bit
fragment offset

8-bit
time to live

8-bit
protocol

16-bit
header checksum

12-bii
source address
32-bit —
destination address

Figure 11: The IP Header

The IP protocol is the predominant network protocol. It provides a best-effort packet
delivery service that is used by all the transport protocols in the TCP/IP suite (see Figure
11 for a depiction of the IP header). However, there is no guarantee that an IP packet will
arrive at its destination, or on arrival, be intact. These qualities are provided by higher
level protocols10.

2.2.3.2 IP Fragmentation

The IP protocol makes provisions for the fragmentation and re-assembly of IP packets
that are deemed too large. IP fragmentation can occur at the source machine or anywhere
along the route to the destination. It is a process whereby the data segment of an IP
packet is broken into multiple pieces, each of which receives an IP header. The IP header
of each fragment contains a fragmentation offset that the destination machine uses to put
the pieces back together. IP fragmentation is completely transparent to both the source
and destination transport layer. For instance, consider a single UDP datagram consisting
of 16 header bytes and 32 data bytes. The contents of the UDP datagram are usually
placed into a single IP packet and sent. With IP fragmentation, however, a UDP packet
may be split into several pieces during its journey, and then the pieces are reassembled on
arrival at their destination.

30

2.2.3.3 Berkeley Raw Sockets

Berkeley Sockets are the traditional programming interface to the network stack. The
sockets API allows for the creation of sockets that can be connected, read, and written by
an application. During the creation of a socket, the application can specify what sort of
transport service it would like. Sockets, then, represent the interface between the
application and the transport layer. Each layer below the application layer is then filled
in by the operating system.

Should a programmer need to over-ride the operating system and fill in these layers
himself, he can do this by making use of raw sockets. For each layer that the
programmer wishes to emulate, additional space is created at the top of the message
buffer. This space can then be filled with the correct (or incorrect) values that correspond
to what the OS fills in. For instance, the OS places the source IP address in the IP header.
By custom crafting the IP field, however, the programmer can place any IP address he
desires into that field. This is often referred to as IP spoofing, and it is one potentially
malicious use of raw sockets. Another, more common, use for raw sockets is to simulate
transport protocols not supported by regular sockets. For instance, a programmer wishing
to send an ICMP echo request can fill in the ICMP and IP protocol headers by hand in
order to create the traditional "ping" effect. The link layer, which most often entails the
addition of an Ethernet header, is added by the OS, and cannot be manipulated with raw
sockets.

2.2.4. Data Generators

As mentioned earlier, the most significant problem of black-box testing is the generation
of test data. Unlike traditional black-box testing approaches, NetHose generates data in
order to test the bounds of the software under analysis. The approach uses combinations
of valid and invalid inputs to test the network stack. The packets that NetHose creates
will be used to test the network stack's ability to handle anomalous data.

NetHose uses data generators to produce data to fill each of the fields in the header of a
packet. The network stack processes the packet headers, not the body of the message.
As a result we are interested in generating anomalous packet header fields. Each field
has its own data generator that is capable of producing values specific to that field. The
values that a data generator produces are a mix of valid and anomalous data. For
example, the data generator that produces the value to be used in the "header length" field
will be able to produce the correct value, but is also able to produce values that are
incorrect. The incorrect values will attempt to test boundary conditions and special
circumstances. For example, incorrect values that the "header length" field might
produce include values that are slightly longer or slightly shorter than the actual value,
the value zero, and the maximum value allowed.

NetHose attempts to exploit the relationships that exist between certain header fields. To
capture these relationships, NetHose allows data generators to be built through the use of
other data generators. For example, if field A is supposed to be less than field B, then a

31

data generator for field A might be built that first calls the data generator for field B, and
then generates its own data. The values that data generator A produces are based on the
relationship that exists between fields A and B. These values test the boundaries of this
relationship by producing data that violates the relationship in a variety of ways.

The tests that NetHose executes consist of using data generators together in different
combinations. Ideally we would execute every combination of each data generator,
however running this many tests is currently not feasible. What we have done is to group
together related header fields. We then execute tests that explore all combinations of
these groups of fields.

2.2.5. Test Framework

The primary component in NetHose is the testing module, which runs on the testing
machine. This module is responsible for reading the configuration file, building the
appropriate packets, and sending these packets. NetHose also makes use of a small
module that runs on the machine that is being tested. The function of this module is
simply to return a "ping" to the machine that is performing the testing. This is used to
determine whether the machine being tested is still responding.

The testing module begins by reading from a configuration file. This file contains
information that describes the tests that are going to be run. First, it contains information
to describe which protocols are under test. Then it describes which fields in the transport
header need to be perturbed. For instance, the message size field and the checksum fields
might be selected for testing. The file then specifies how many fragments the transport
layer message should be broken into. Finally, for each fragment, fields in the network
layer header are selected for testing. Fields such as IP version and IP type of service can
be selected. NetHose parses all of this information and stores it internally.

Next, NetHose begins to construct the packets that will be used in the test. The data
generators create the data that fills the packets. NetHose combines the data generators in
the manner specified in the configuration file.

Once the packet has been created, it is sent over the network via the raw sockets
interface. After sending each sequence of packets, NetHose sends a message to the
machine that is being tested. If the machine is still functioning properly, it will reply to
this message. When NetHose has detected that a machine is no longer responding, it will
pause the testing process. At this point NetHose also makes a record of the disruption in
service. These disruptions are further examined in a more controlled environment.
Testing resumes when NetHose is once again able to communicate with the target
machine, usually after the machine has been manually restarted.

2.2.6. Methodology

It is hardly feasible to test all possible combinations of bits in even a relatively small
header such as the UDP header. Admittedly, such a test set would constitute a very

32

thorough measurement of the robustness of a UDP implementation. However, the UDP
header consists of 4 fields that are 16 bits in size, and 264 is a prohibitively large number
of packets to send across the network. Furthermore, an overwhelming majority of these
combinations will fail the same initial sanity checks. For instance, they will fail the
checksum. If, however, the number of tests per field is limited to a few carefully crafted
values, the resulting set of packets may serve to approximate the useful set of tests. To
be feasible then, black-box testing of the network stack requires a carefully limited set of
tests for each field.

For protocols that are not stateless, such as TCP, and to a lesser degree, IP, it is not
necessarily sufficient to test all combinations of a single packet. To fully test the IP
fragment re-assembly portions of an IP implementation, it is necessary to construct a test
set that includes multiple IP packets. If you consider that each IP header consists of 12
fields, and that each field can be tested by 4 carefully crafted values, it still becomes
necessary to send 412 packets across the network for each fragment. Conducting a test
that contains two fragments would require 424 packets. This is clearly infeasible for
testing multiple IP fragments, and it is similarly infeasible for testing multiple packets in
a TCP session. Thus, black-box testing of the network stack must involve the careful
selection of fields under test.

When testing a single packet, we ran a single large test set that we hoped would uncover
any errors in the stateless aspects of the UDP and IP protocols. Any errors could be
isolated using progressively smaller test sets. To test the IP re-assembly algorithms, it
became important to selectively narrow the number of fields under test. This whittling
down of the test set was accomplished in a few different ways: certain fields of only
moderate relevance were tested very little and other fields of little or no relevance are left
unperturbed. If, for instance, we wished to test IP re-assembly with two packets, we
might only perturb the IP Type Of Service Flags in one of the packets. Furthermore, we
might refrain from perturbing the IP Version field at all. These methods of reducing the
test set were employed at the discretion of the tester.

2.2.7. Testing Setup

The testing that we conducted was performed on three different platforms: Windows NT
Service Pack 3, Windows NT Service Pack 4, and Windows 95 OEM Service Release 2.
Several different machines were used during testing, including a laptop, a 486, a dual
Pentium, and several other high-end workstations. The pace of packets being sent to the
machines under test was intentionally slow enough that performance differences in
machines should not affect the outcome of the tests.

2.2.8. Description of Robustness Weaknesses Found

Three types of robustness failures were observed during the testing: kernel exceptions,
hard freezes, and system slowdown. The slowdown that we observed occurred only
when testing the Windows 95 operating system. After a large number of tests, it became

33

impossible to load and execute any applications on the Windows 95 system. The system
returned to normal after being rebooted.

A kernel exception (colloquially known as the Blue Screen of Death) appeared during
several tests of NT SP3, and Windows 95. Under Windows 95, the user has the option of
either rebooting or continuing execution in a corrupted environment. On NT the system
must be rebooted.

The test computer sometimes completely froze during a batch of tests. This was the most
common catastrophic result. After freezing, the test computer no longer responded to the
mouse, keyboard, or network. The screen would remain frozen in place until the
computer was manually reset. This type of robustness failure was found on both NT SP3
and Windows 95.

2.2.9. Testing Results

An exhaustive testing of a single UDP/IP packet required the transmission of nearly
100000 packets. This involved varying all 4 UDP fields and 7 IP fields in one giant set
of tests. The only robustness failure uncovered during this set of tests was an instance of
slowdown on Windows 95. Thereafter, we set about testing multiple IP fragments in a
large number of smaller test sets. The fields varied during this series of test sets were
chosen heuristically in order to limit the number of tests. This series of tests sometimes
involved as few as 100 packets or as many as 10,000 packets. The fragmented packet
tests were much more successful than the single packet tests at uncovering failures, and
they uncovered several dozen robustness weaknesses in both Windows NT SP3 and
Windows 95 OSR 2. The failures uncovered included both blue screens and hard freezes.

2.2.10. Conclusions

The common thread between all of the test sets that caused failures is that they all
involved perturbation of the IP fragmentation offset field. This would lead us to
conclude that for Windows 95 and Windows NT Service Pack 3, insufficient checking
was done on the fragment offset field. Because none of these same tests uncovered any
robustness failures in Windows NT Service Pack 4, we can assume that this set of
robustness failures has been since corrected, and that Windows NT SP4 is robust to
fragmentation attacks. This makes sense because one of the purposes of SP4 was to
protect against fragmentation attacks.

The most significant errors in the UDP and IP implementations lay in the IP. The fact
that an IP implementation requires some internal state for fragment re-assembly makes
the IP protocol a good target for NetHose style testing. It is possible then, that
implementations of a protocol such as TCP will contain similar errors because TCP
maintains state for a variety of purposes.

34

2.3. The Failure Simulation Tool

2.3.1 Introduction

Commercial off-the-shelf (COTS) software is being used increasingly in developing
mission-critical systems. For the purposes of our research, COTS software is any
software for which source code is not available. However, in general, off-the-shelf
software is any software that is not developed in house. The time and expense of
developing software in house has spurred developers of critical systems in the
transportation, medical devices, and nuclear industries to adopt COTS software in the
development of their critical systems. More recently, the Windows 32-bit (Win32)
platform, which includes Windows 95/NT/2000/CE operating systems, is being used in
mission critical applications.

For example, the U.S. Navy requires that its ships migrate to Windows NT workstations
and servers under the Information Technology in the 21st century (IT-21) directive .
While modernizing the fleet's technology base is appropriate, the risks of migrating to
new platforms are great, particularly in mission-critical systems. One widely-publicized
early casualty of this directive involved the USS Yorktown, a U.S. Navy Aegis missile
cruiser. The cruiser suffered a significant software problem in the Windows NT systems
that control the ship's propulsion system. An application crash resulting from an
unhandled exception reportedly caused the ship's propulsion system to fail, requiring the
boat to be towed back to the Norfolk Naval Base shipyard12.

We believe the migration of critical systems to COTS software and to the Windows
platform will continue. However, in spite of the headlong rush to adopt COTS software,
there exists a dearth of research, technology, and tools for determining the impact of
failures of third-party COTS software on the dependability of the system13. That is, the
system integrators or maintainers of critical systems have little support to make
engineering decisions on what kind of impact the failure of a third party software
component will have on their systems, let alone know how to harden their systems for
robustness to failures from third party off-the-shelf software. The reality is, no one
develops any system, soup to nuts, from custom-built software. Instead, an organization
will run its software (or even purchase the application software) on commercial operating
systems and use third-party software components to build their applications. In mission-
critical systems, it is imperative that the impact of the failure of these third-party
components on the application software be known in advance in order to harden the
software for robustness.

In this research topic we develop an approach and technology for artificially forcing
exceptions and error conditions from third-party COTS software when invoked by the
software application under study. The goal in developing this technology is to support
testing of critical applications under unusual, but known, failure conditions in an
application's environment. In particular, we simulate the failure of operating system
functions; however, the approach and tool can be used to simulate the failure of other
third party software such as imported libraries and software development kits.

35

We have focused on the Win32 platform because we believe this to be the platform to
which most critical applications are migrating, and it is the platform for which the least
amount of research on dependability assessment has been performed, in spite of its
growing adoption. While the general approach developed here is platform independent,
the technology we have built and the implementation details of the approach are specific
to the Win32 platform.

The approach is briefly summarized here, then developed in Section 2.3.4. Because we
are working in the domain of COTS software, we do not assume access to program
source code; instead, we work with executable program binaries. The approach is to
employ fault injection functions in the interface between the software application under
study and the operating system (or third party) software functions the application uses.
The fault injection functions simulate the failure of these resources, specifically by
throwing exceptions or returning error values from the third-party functions. The
simulated failures are not arbitrary, but rather based on actual observed failures from OS
functions determined in our previous study of the Windows NT platform (see6), or based
on specifications of exceptions and error values that are produced by the function being
used. In addition, the approach does not work on models of systems, but on actual system
software itself. Therefore, we are not simulating in the traditional sense, but rather
forcing certain conditions to occur via fault injection testing that would otherwise be very
difficult to obtain in traditional testing of the application. The analysis studies the
behavior of the software application under these stressful conditions and poses the
questions: is the application robust to this type of OS function failure? does the
application crash when presented with this exception or error value? or does the
application handle the anomalous condition gracefully?

In the remainder of this section, we present some background in robustness testing
research, provide motivation for why handling errors and exceptions is critical, then
develop the methodology and tool for testing COTS software under these types of
stressful conditions.

2.3.2 Background

Robustness testing is now being recognized within the dependability research community
as an important part of dependability assessment. To date, robustness testing has focused
on different variants of Unix software. In section 2.1.2 we discussed the work performed
by B.P. Miller2'3 and P. Koopman4'14.

In this study, we are concerned with testing the robustness of application software —
specifically mission-critical applications — that run on the Win32 platform. Unlike
nominal testing approaches (see 1516171819) that focus on function feature testing, we are
concerned with testing the software application under stressful conditions. Robustness
testing aims to show the ability, or conversely, the inability, of a program to continue to
operate under anomalous input conditions. More formally, the IEEE Standard Glossary of
Software Engineering Terminology states that robustness is "the degree to which a

36

system or component can function correctly in the presence of invalid inputs or stressful
environmental conditions".

Testing an application's robustness to unusual or stressful conditions is generally the
domain of fault injection analysis. To date, fault injection analysis of software has
generally required access to source code for instrumentation and mutation (see for an
overview of software fault injection). In addition, fault injection analysis to date has been
performed on Unix-based systems. We seek to develop technologies that will work on
COTS-based systems and for the Win32 platform.

To define the problem domain of this work better: an application is robust when it does
not hang, crash, or disrupt the system in the presence of anomalous or invalid inputs, or
stressful environmental conditions. Applications can be vulnerable to non-robust
behavior from the operating system. For example, if an OS function throws an
unspecified exception, then an application will have little chance of recovering, unless it
is designed specifically to handle unspecified exceptions. As a result, application
robustness is compromised by non-robust OS behavior.

In our previous studies of the Windows NT platform, we analyzed the robustness of
Windows NT OS functions to unexpected or anomalous inputs5'6. We developed test
harnesses and test data generators for testing OS functions with combinations of valid
and anomalous inputs in three core Dynamically Linked Libraries (DLLs) of the Win32
Application Programming Interface (API): USER32.DLL, KERNEL32.DLL, and
GDI32.DLL. Results from these studies show non-robust behavior from a large
percentage of tested DLL functions. This information is particularly relevant to
application developers that use these functions. That is, unless application developers are
building in robustness to handle exceptions thrown by these functions, their applications
may crash if they use these functions in unexpected ways.

We know from our testing of the Win32 platform that the OS functions can throw
exceptions and return error values when presented with unusual or ill-formed input. In
fact, we know exactly which exceptions and error codes a given OS function will return
based on function specifications and our previous experimentation. However, even
though this anomalous behavior from the OS is possible (as demonstrated), it is actually
unusual during the normal course of events. That is, during normal operation, the OS will
rarely behave in this way. Using nominal testing approaches to test the application might
take an extremely long time (and a great many test cases) before the OS exhibits this kind
of behavior. Thus, testing the robustness of the application to stressful environmental
conditions is very difficult using nominal testing approaches.

However, using fault injection, we force these unusual conditions from the OS or from
other third-party software to occur. Rather than randomly selecting state values to inject,
we inject known exception and error conditions. This approach then forces these rare
events that can occur to occur. Thus, this approach enables testing of applications to rare,
but real failure modes in the system. The approach does not completely address the
problem of covering all failure modes (especially unknown ones), but it does exploit the

37

fact that third-party software does fail in known ways, even if infrequently. At a
minimum, a mission-critical application must account for these known failure modes
from third-party software. However, many applications never do, because software
designers are mostly concerned about the application they are developing and assume the
rest of the environment works as advertised. The approach and tool developed here tests
the validity ofthat assumption by forcing anomalous conditions to occur.

It is important to note that we are not necessarily identifying program bugs in the
application, but rather we are assessing the ability of the application to handle stressful
environmental conditions from third-party software. So, this approach is an off-nominal
testing approach that is not a substitute for traditional testing and fault removal
techniques. In fact, the approach tests the application's error and exception handling
mechanisms — the safety net for any application. If the application does not account for
these types of unusual conditions, chances are that it will fail.

2.3.3 Errors and Exceptions

Error and exception handling are critical functions in any application. In fact, error and
exception handling make up a significant percentage of the code written in today's
applications. However, error and exception handling are rarely tested because: (1)
programmers tend to assume well-behaved functionality from the environment, and (2) it
is difficult to create these kinds of anomalous behaviors using nominal testing techniques.

In 21, Howell argues that error handling is one of the most crucial, but most often
overlooked aspect of critical system design and analysis. For example, Howell cites four
examples of the criticality of error handling21:

• an analysis of software defects by Hewlett-Packard's Scientific Instruments
Division determined that error checking code was the third most frequent cause of
defects in their software

• in a case study of a fault-tolerant electronic switching system, it was found that 2
out of 3 system failures were due to problems in the error handling code

• many of the safety-critical failures found in the final checks of the space shuttle
avionics system were found to be associated with the exception handling and
redundancy management software

• problems with the use of Ada exceptions were a key part of the loss of the first
Ariane-5 rocket

Errors and exceptions are often used by vendors of third-party software components to
signal when a resource request has failed or when a resource is being improperly used.
For example, exceptions may be thrown when invalid parameters are sent to a function
call, or when the requesting software does not have the appropriate permission to request
the resource.

Error codes are returned by a function call when an error occurs during the execution of
the function. For example, if a memory allocation function is unable to allocate memory,

38

it may return an invalid pointer. Error codes are graceful exits from a function that also
allow a programmer to debug the source of the problem. Exceptions can be thrown for
similar reasons, but more often, exceptions are thrown for more severe problems such as
hardware failures or for cases when it is not clear why a resource request failed. For
example, an exception returned by a function call may have actually originated from
another function that was called by the requested function. If an exception is not handled
by one function, it is passed up the function call chain repeatedly until either some
function handles the exception or the application crashes.

In using third-party software, the application developer must be aware of what exceptions
can be thrown by the third-party function. Third-party functions can be embedded in
libraries such as the C run-time library, software development kits, commercial
software APIs, or as part of the core operating system. In most cases, the source code to
the third-party function is not available, but header files and API specifications are. The
function API, header files, or documentation should declare what exceptions, if any, can
be thrown by the third-party function (and under what circumstances). If the application
developer does not write exception handlers for these specified cases, then the robustness
or survivability of the application is placed at risk if an exception is thrown in practice.

2.3.4 Wrapping Win32 COTS Software for Failure Simulation

In order to assess the robustness of COTS-based systems, we instrument the interfaces
between the software application and the operating system with a software wrapper. The
wrapper simulates the effect of failing system resources, such as memory allocation
errors, network failures, file input/output (I/O) problems, as well as the range of
exceptions that can be thrown by OS functions when improperly used. The analysis tests
the robustness of the application to anomalous and stressful environment conditions. An
application is considered robust when it does not hang, crash, or disrupt the system in the
presence of anomalous or invalid inputs, or stressful environmental conditions.

From our previous studies of the Windows NT platform, we found a large percentage of
OS functions in the three core DLLs of the Win32 API that threw exceptions when
presented anomalous input. If these functions are used similarly by an application, then
the application must be prepared to handle these exceptions, specified or not. Because
testing the application via nominal testing approaches is unlikely to trigger these
anomalous OS conditions, we need some alternative method to test the robustness of
these applications to OS anomalies without requiring access to source code. To address
this shortcoming in the state-of-the-art, we have developed the Failure Simulation Tool
(FST) for Windows NT.

The approach that FST employs is to artificially inject an error or exception thrown by an
OS function and determine if the application is robust to this type of unusual condition.
FST instruments the interface between the application executable and the DLL functions
it imports such that all interactions between the application and the operating system can
be captured and manipulated.

39

Wrapper

Application
Binary

• Import Address Table

S1 : S1
S3 : S3

ImDort Address Table
S1 : wrapSI
S2: S2
S3 : wrapS3

Code Seament

wrapSIO
{ observe/perturb/

assert;
S10;
observe/perturb/
assert;}

wrapS30
{...}

Code Seqment
S10:
S20;
S30;

DLL

Import Address Table

Code Seament

S10;
S20;
S3Q;

Figure 12: Wrapping Win32 Executable Programs

Figure 12 illustrates how program executables are wrapped. The application's Import
Address Table (IAT), which is used to look up the address of imported DLL functions, is
modified for functions that are wrapped to point to the wrapper DLL. For instance, in
Figure, functions SI and S3 are wrapped by modifying the I AT of the application. When
functions SI and S3 are called by the application, the wrapper DLL is called instead. The
wrapper DLL, in turn, executes, providing the ability to throw an exception or return an
error code to the calling application. In addition, as the figure shows, we also have the
ability to record usage profiles of function calls and the ability to execute assertions.

There are several ways in which the wrapper can be used. First, the wrapper can be used
as a pass-through recorder in which the function call is unchanged, but the function call
and its parameters are recorded. This information can be useful in other problem domains
such as for performance monitoring and for sandboxing programs. Second, the wrapper
can be used to call alternative functions instead of the one requested. This approach can
be used to customize COTS software for one's own purposes. For our purposes, we are
interested in returning error codes and exceptions for specified function calls. Thus, we
develop custom failure functions for each function we are interested in failing.

Three options for failing function calls are: (1) replace calling parameters with invalid
parameters that are known to cause exceptions or error codes, (2) calling the function
with the original parameters that are passed by the application, then replacing the
returned result with an exception or error code, or (3) intercept the function call with the
wrapper as before, but rather than calling the requested function, just returning the
exception or error code. Option 3 is attractive in its simplicity. However, options (1) and

40

(2) are attractive for maintaining consistent system state. In some cases, it is desirable to
require the requested function to execute with invalid parameters to ensure that side
effects from failing function calls are properly executed. Option (1) accounts for this
case. Using the information from our previous studies of the Win32 API6, Option (1) can
be implemented by using specifically those input parameters that resulted in OS function
exceptions. Alternatively, specifications for which parameters are invalid when using a
function (such as one might find in pre-condition assertions) can be used for causing the
failure of the function in using Option (1). Option (2) is less rigorous about handling side
effects from failing function calls, but will ensure side effects from normal function calls
are properly executed. If, however, side effects from calling functions are not a concern,
i.e., if the analyst is strictly concerned about how well the application handles exceptions
or error codes returned from a function call, then Option 3 is sufficient.

The FST modifies the executable program's IAT such that the address of imported DLL
functions is replaced with the address to our wrapper functions. This modification occurs
in memory rather than on disk, so the program is not changed permanently. The wrapper
then makes the call to the intended OS function either with the program's data or with
erroneous data. On the return from the OS function, the wrapper has the option to return
the values unmodified, to return erroneous values, or to throw exceptions. We use this
capability to throw exceptions from functions in the OS (which we found to be non-
robust in our earlier studies) called by the program under analysis.

After instrumenting all of the relevant Import Address Table entries, the FST performs a
search across the code segment of the module for call sites to the wrapped functions. A
call site is identified as a call instruction followed by a one-word pointer into the IAT.
This call site information is used for two purposes. First, it gives the user a sense of how
many call sites there are for a particular function. Second, it allows the FST to tally the
number of calls on per site basis instead of on a per function basis.

Finally, the FST tries to match call sites with linked or external debug information. For
instance, if the FST has located a call to HeapAlloc at a specific location in memory, it
attempts to determine the corresponding line of source. Though debugging information is
not necessarily distributed with an application, it can be a great help to a tester on those
occasions when it is present. Because of the difficulties involved with juggling the many
formats in which debugging information can be distributed, the FST makes makes use of
the Windows NT library ImageHlp.DLL which helps to abstract the details of the debug
information format.

The FST is also able to intercept dynamic calls to exported functions. The FST provides a
special wrapper for the KERNEL32.DLL function GetProcAddress, a function that can
be used to retrieve the address of a function at run-time. For functions that the FST would
like to wrap, the special GetProcAddress wrapper will return the address of a wrapper
function instead of the correct function.

41

2.3.5 Using the Failure Simulation Tool

The prototype Failure Simulation Tool provides an interface that helps to simplify the
testing of COTS software. There are three primary components to the Failure Simulation
Tool: the Graphical User Interface (GUI), the configuration file, and the function wrapper
DLLs.

A function wrapper DLL contains the wrappers that will be called in place of the
functions that the user chooses to wrap. These wrappers are responsible for simulating
the failure of a particular function. The FST includes a variety of wrappers for
commonly used functions. Additional wrappers can be developed by a user and used by
the Failure Simulation Tool.

The configuration file is used to specify the DLL functions that are going to be wrapped,
and the function that is going to be doing the wrapping. The configuration file is also
used to break the functions into groups that are displayed by the tree control in the GUI.
Here is an example of the configuration file.

PAGE: Memory
KERNEL32:HeapAlloc:WRAPDLL:WrapHeapAlloc
KERNEL32:LocalAlloc:WRAPDLL:WrapLocalAlloc

This configuration file specifies that there should be a group named "Memory," and that
there will be two functions in that group. The first function to wrap is HeapAlloc, located
in KERNEL32.DLL, and it should be wrapped using the function WrapHeapAlloc, found
in WRAPDLL.DLL. The second function is specified in the same manner.

42

Load

Tetminate

Notepad exe

:LogViewet

Save

Name

Hotepad.exe

■ Memory

D GlobalMloc
D ClobalReSlloc

D HeapBlloc
D HeapCreate

- ■ LocalSlloc

■ 0xlb424cc

■ 0xlb43613

■ 0xlb43a47

■ :0xlb44569 ':".

■ 0xlb445f0

■ 0xlb44b8c

■ 0xlb451e8

* ■ LocaUteKLloc
D VirtualBlloc

■ File I/O

■ Dynamic

J±

i. nn/""^
Close-

Coverage:: (Beset

0 fit Search Help

Expand Al Close

Wrapper | Success [Failure | Special | Debug

Mixed

Trigger

Yes/No

Yes/uo :'■;

Allow To Pass?

Function: LocaMtec
Call Site: 0x1b43a47
.Debug :G, s ■■

Yes f Mo

Refresh

Log Re |D:\FST2Checkout\infowarWo\FST2\testdi\LOGRLE.TXT

Comment

"3

HeapAlloc:0x77e881c4
HeapAlloc:0x77e881c4

LocalReAlloc:0x77d97e73
LocalReAlloc:0x77d97e73

Success - Thu Ju! 0113:34:29.8881999
Success - Thu Jul 0113:34:29.8881999
Success - Thu Jul 0113:34:37.6591999
Success - Thu Jul 01 13:34:38.741 1999

m

x

il :0

Figure 13: The Failure Simulation Tool GUI

Figure 13 shows the graphic interface to the failure simulation tool that allows selective
failing of OS resources. The window in the upper left is the Execution Manager. This
window is used to select an application for testing, to execute and terminate that
application, and to access the other components of the FST. The largest window in
Figure 13 is the interface that allows the user to control which functions are currently
being wrapped, and what the behavior of those wrappers should be. The window titled
"Log File Viewer" maintains a time-stamped listing of all of the function calls that have
been made. The small window in the foreground is an example of a wrapper that allows
the user to select whether a function should fail or not on a case-by-case basis. In the
upper right of this figure is the application being tested - in this case the Notepad.exe
application. For a more detailed description of how to use the Failure Simulation Tool,
please see the documentation supplied as part of the System User's Manual.

In its current version, the FST is used to interactively fail system resources during
execution. The dynamic binding to functions allows the tool to fail or succeed calls to OS
functions on the fly in real time. The FST can be used to wrap any Win32 application
(mission critical or not) in order to interactively fail system resources and to determine
the impact of this failure. The performance overhead of the wrapping has not been
measured, however, no visible degradation in performance of the application software

43

has been observed. The tool is to be used for off-line analysis, however, in order to
determine the effect of system failures prior to deployment. Thus, performance overhead
in the analysis is not a large concern, unless it were to introduce unacceptable delays in
testing.

2.3.6 Conclusions

This section on the Failure Simulation Tool provides an approach and tool for assessing
the robustness of Win32 applications in the face of operating system anomalies. Two
factors have motivated this work: first, more and more critical systems are being
employed on the Win32 platforms such as Windows NT/95/CE/2000; second, the
error/exception handling routines of software applications are rarely tested, but form the
critical safety net for software applications. In addition, because most COTS software
(such as third-party libraries or OS software) rarely provides access to source code, we
constrain our approach to analyzing software in executable format.

The Win32 Failure Simulation Tool was developed to allow interactive failing of OS
resources during testing. The tool allows the analyst to observe the effect of errors or
exceptions returned from the OS on the application under analysis. If the program fails to
handle exceptions thrown by an OS function it will usually crash.

In the example of the USS Yorktown, the approach described herein can be used to wrap
the ship's propulsion system software in order to assess how robust it is to exceptions
thrown by the OS. For instance, when a divide-by-zero exception is thrown, the analysis
would show that the propulsion system will crash. This information can then be used to
prevent such an error from occuring or to handle the divide-by-zero exception gracefully.
The most pressing question now for this smart ship is what other exceptions is the ship's
propulsion system and other critical systems non-robust to?

Currently, a limitation of the tool is its coarse-grained ability to monitor the effects of the
fault injection on the target application. Our measure for robustness is crude: an
application should not hang, crash, or disrupt the system in the presence of the failure
conditions we force. However, it is possible that the third party failures we introduce
slowly corrupt the program state (including memory and program registers) that remain
latent until a later period after the testing has ceased. It is also possible that while the
failure does not crash the program it could simply cause the incorrect execution of the
program's functions. Neither of these cases is analyzed by our tool. To address the former
problem, an extensive testing suite would be necessary to gain confidence that even after
the failure was caused, the program remains robust. To address the latter problem, an
oracle of correct behavior is necessary and a regression test suite would be required after
the failure was forced in order to determine correctness of the program. In both of these
cases, our tool would falsely label the program as robust to the failure of the third-party
component, when in fact the failure introduced a latent error in the application, or the
program's output is corrupted without effecting the execution capability of the program.
Hence, the scope of our monitoring is limited to the ability of the program to continue to

44

execute in the presence of third-party failures. It does not have the ability to judge the
correctness of the functions computed by the application.

In summary, the testing approach and prototype presented is of value to consumers,
integrators, and maintainers of critical systems who require high levels of confidence that
the software will behave robustly in the face of anomalous system behavior.

3. Project Summary

In this project, we examined a key property of secure and dependable systems:
robustness. Our research focused on developing techniques for analyzing as well as
increasing the robustness of software due to unknown and anomalous events. The project
was partitioned into three distinct and complementary threads of robustness research:
intelligent test case generation, testing of the Win32 network stack for resilience to denial
of service, and testing application software for robustness to failing operating system
(OS) resources.

The Random and Intelligent Data Design Library Environment (RIDDLE) was developed
to support intelligent black-box testing of operating system and command-line utilities to
unusual inputs. The work leveraged research in robustness testing of OS utilities
previously performed on Unix systems, most notably by Barton Miller's research group at
the University of Wisconsin. Robustness testing of OS utilities has previously found
vulnerabilities in operating system software to unexpected, random input. Adopting this
approach for the Win32 platform, we enhanced it further by intelligently combining valid
input with anomalous input in order to unmask flaws that remain hidden to purely
random testing. RIDDLE provides a test harness and library for automatically generating
test data according to both random (generally invalid) and valid parameters. Our studies
have shown empirically the benefit derived from combining intelligent test data
generation with random test case generation for the purpose of testing robustness.

Drawing on the experience of RIDDLE, we developed a tool for testing the robustness of
the Win32 network stack to anomalous data. The importance of this work is in
developing structured approaches to testing critical portions of software that comprises
the National Information Infrastructure (Nil). Since the network stack of the Win32
platform is a key component of the Nil, this approach is among the first to independently
and systematically study the robustness of this software under anomalous input
conditions. Fundamental problems in the design of network protocols such as TCP/IP
can leave all platforms vulnerable. However, flaws, in the networking software can leave
a given platform vulnerable to anomalous use of network services, or attack. NetHose is a
network stack testing utility that is able to test the network stack of Win32 systems to
unexpected data. This type of analysis effectively tests the operating system's ability to
handle unusual network packets. The approach uses combinations of valid and invalid
data in packet header fields in order to test the robustness of the network stack against
unusual packet headers. Our studies revealed three types of robustness failures: kernel
exceptions (colloquially known as blue screen of death), hard freezes, and system
slowdowns.

45

The third thread of research in this project was concerned with testing the robustness of
Win32 applications under failing OS conditions. From our previous research with
RIDDLE, we found that the three core libraries that compose the Win32 system more
often than not throw memory access violation exceptions when presented unusual input.
Thus, if application developers (particularly for mission-critical applications) do not
account for these exceptions that the OS throws, then the application is likely to crash.
The Failure Simulation Tool (FST) provides the ability to test Win32 executables
(without requiring source code) for robustness to exceptions or errors returned by OS
functions. FST instruments the interface between an application and the OS DLL in order
to return errors or exceptions from an OS function. This is a far more efficient approach
than black-box testing of an application in hopes of generating an OS exception.
Experiments showed that Microsoft desktop applications had varying levels of non-
robustness to exceptions and errors returned by OS functions. This type of non-robust
behavior is typically expected from desktop applications. However, non-robustness to
errors or exceptions returned from OS functions is typically not acceptable in a mission-
critical application, such as a ship propulsion system. Thus, FST provides the ability to
test mission-critical software for robustness to failing OS functions. In the final stage of
this work, we used the instrumentation layer to provide protective wrappers for
applications such that an exception can be caught by the wrapper and returned as an error
when it is known a priori that the error is handled gracefully, while an exception is not.

In summary, the work performed under this contract has significantly advanced the state-
of-the-art in a key area or security and dependability of Win32 systems: software
robustness. We've developed and delivered three distinct technologies for analyzing and
improving the robustness of Win32 systems under unusual conditions associated either
with malicious attack or misbehaving operating system functions.

4. Statement of Work References

This section references each of the items in the original statement of work, and identifies
sections of this report that discuss the completion of each item.

4.1 The contractor shall accomplish the following:

4.1.1 Input Generation Language

RIDDLE, NetHose, and the Grammar Generator each make use of a language for
specifying the type of input that is produced for testing. The language that RIDDLE
requires is used in the configuration files to specify the data generators that will be used,
and is discussed in sections 2.1.3 and 2.1.4.2. The NetHose specification language is
touched on briefly in this report, and is explored more thoroughly in the System User's
Documentation. The language used by the grammar generator is based on Backus-Naur
Form, and is described in section 2.1.4.5.2 of this report.

46

4.1.2 Input Generation and Perturbation Module

The tools mentioned in the previous paragraph (4.1.1) each implement an input
generation and perturbation module that takes input in the form of the configuration
language, and produces output that can be used to test applications. This modules relies
on the use of data generators, which are described in sections 2.1.3 and 2.2.4.

4.1.3 Security Assertion Language

The security assertion language used by the testing utilities that we've developed has
been built into the tools themselves. We did not have the need to define a very complex
SAL for the type of testing that we performed. The data that we gathered was fairly
coarse-grained, and we were able to build the necessary checks into the security
watchdog module (described in the following paragraph), without the need for a separate
security assertion languge.

4.1.4 Security Watchdog Module

RIDDLE implements a security watchdog that is capable of detecting how an application
or function terminates (section 2.1.4.2). This watchdog is capable of differentiating
between the normal termination of an application or function, and termination that has
resulted due to an error or robustness violation.

The security watchdog used by NetHose is used to determine the status of the remote
machine being tested. The watchdog process periodically checks to make sure that the
network stack of the machine under test is still operating normally (see section 2.2.5).

4.1.5 Execution Manager

The execution manager used by RIDDLE and NetHose (see sections 2.1.4.2 and 2.2.5)
combines the input generation and perturbation module with the security watchdog
module to provide fully automated collection and analysis of data. The execution
manager serves as the core component of these two utilities.

4.1.6 COTS Experimentation

Section 2.1.4.3.3 describes the results of testing the Win32 API with RIDDLE. Section
2.1.4.4.3 describes the results of testing native Microsoft command-line utilities and
ported Cygnus GNU utilities with RIDDLE. The grammar generator was used to test
both command line utilities (section 2.1.4.5.3) and a variety of web browsers and FTP
servers (section 2.1.4.5.4).

NetHose was used to test the network stack of both the Windows NT and Windows 95
operating systems (section 2.2.7).

47

4.1.7 Deliver and demonstrate the CVA prototype system at RL /1WT

The time and date for this meeting has not yet been determined.

4.1.8 Reports and Documentation

The reports and documentation produced for this product satisfy the requirements as
specified in the contract.

4.1.9 Software

All software developed under this contract will be delivered to the government according
to SOW item 4.1.9 along with this report.

5. Papers and Presentations

A.K. Ghosh, M. Schmid, "Techniques for Evaluating the Robustness of Windows NT
Software", to appear in the DARPA Information Survivability Conference and
Exposition (DISCEX) 2000, January 25-27, 1999, Hilton Head, SC.

A.K. Ghosh, M. Schmid, "An Approach to Testing COTS Software for Robustness to
Operating System Exceptions and Errors", 10th International Symposium on Software
Reliability Engineering (ISSRE-10), November 1-4, 1999, Boca Raton, FL.

A.K. Ghosh, M. Schmid, F. Hill, "Wrapping Windows NT Software for
Robustness", in Proceedings of the 29th International Fault Tolerant
Computing Symposium (FTCS-29), June 15-16, 1999, Madison, WI, pp.
344-347.

A.K. Ghosh and J.M. Voas, "Inoculating Software for Survivability", in
Communications of the ACM, Volume 42, No. 7, July 1999, pp. 38-44.

A.K. Ghosh, F. Hill, and M. Schmid, "NetHose: A Tool for Finding
Vulnerabilities in Network Stacks", short talk presented at 1999 IEEE
Symposium on Security and Privacy, May, 1999, Oakland, CA.

A.K. Ghosh, M. Schmid, and V. Shah, "Testing the Robustness of Windows
NT Software", in Proceedings of the 9th International Symposium on
Software Reliability Engineering (ISSRE-9), November 4-7,1998,
Paderborn, GE, pp. 231-235.

A.K. Ghosh and M. Schmid, "Wrapping Windows NT Binary Executables for
Failure Simulation", in Proceedings of Fast Abstracts and Industrial
Practices in the 9th International Symposium on Software Reliability
Engineering (ISSRE-9), November 4-7, 1998, Paderborn, GE, pp. 7-8.

48

A.K. Ghosh, V. Shah, and M. Schmid, "An Approach for Analyzing the
Robustness of Windows NT Software", in Proceedings of the 21st National
Information Systems Security Conference (NISSC-21), October 5-8,1998,
Crystal City, VA, pp. 383-391.

M. Schmid and F. Hill, "Data Generation Techniques for Automated Software
Robustness Testing", in Proceedings of the 16th International Conference and Exhibition
on Testing Computer Software (ICTCS'99), June 16-18,1999, Bethesda, MD.

M. Schmid, "The Failure Simulation Tool", A Poster Session, Presented at the 1999
USENIX Windows NT Symposium, July 12-14,1999, Seattle, WA.

49

1 Gen. John J. Sheehan. A commander-in-chief s view of rear-area, home-front
vulnerabilities and support options. In Proceedings of the Fifth InfoWarCon, September
1996. Presentation, September 5.

2 B.P. Miller, L. Fredrikson, and B. So. An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12):32-44, December 1990.

3 B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl.
Fuzz revisited: A re-examination of the reliability of UNIX utilities and services.
Technical report, University of Wisconsin, Computer Sciences Dept, November 1995.

P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz. Comparing operating
systems using robustness benchmarks. In Proceedings of the 16th IEEE Symposium on
Reliable Distributed Systems, pages 72-79, October 1997.

3 A. Ghosh, M. Schmid, V. Shah. An Approach for Analyzing the Robustness of
Windows NT Software. In Proceedings of the 21s' National Information Systems
Security Conference, October 5-8, 1998, p. 374-382. Crystal City, VA.

6 A. Ghosh, M. Schmid, V. Shah. Testing the Robustness of Windows NT Software. To
appear in the International Symposium on Software Reliability Engineering (ISSRE'98),
November 4-7, 1998, Paderborn, GE.

7 J. Richter. Advanced Windows, Third Edition. Microsoft Press, Redmond Washington,
p. 529, 1997.

8 C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention of
buffer-over flow attacks. In Proceedings of the 7th US ENIX Security Symposium, pages
63-78, San Antonio, TX, January 1998.

E.H. Spafford. The Internet Worm Program: An Analysis. Computer Communications
Review, 19(1): 17-57, January 1989.

10 W. Stevens. TCP/IP Illustrated, Volume 1. Addison Wesley Longman, Inc, Reading,
MA. pp. 34-37,144-150,1994.

11M. Binderberger. Re: Navy Turns to Off-The-Shelf PCs to Power Ships (RISKS-
19.75). RISKS Digest, 19(76), May 25, 1998.

12 G. Slabodkin. Software Glitches Leave navy Smart Ship Dead in the Water, July 13
1998. Available online: www.gcn.com/gcn/1998/Julyl3/cov2.htm.

13 J.M. Voas. COTS: The Economical Choice? IEEE Software, 15(2), March / April
1998.

50

14 N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated Robustness Testing of
Off-The-Shelf Software Components. In Proceedings of the Fault Tolerant Computing
Symposium, June 23-25 1998.

15 B. Beizer. Software Testing Techniques. Electrical Engineering / Computer Science
and Engineering. Van Nostrand Reinhold, 1983.

16 B.Beizer. Black Box Testing. Wiley, New York, 1995.

17 G.Myers. The Art of Software Testing. Wiley, 1979.

18 B. Marick. The Craft of Software Testing. Prentice-Hall, 1995.

19 J. Duran and S. Ntafos. An Evaluation of Random Testing. IEEE Transactions on
Software Engineering, SE-10:438-444, July 1984.

20 J.M. Voas and G. McGraw. Software Fault Injection: Inoculating Programs Against
Errors. John Wiley and Sons, New York, 1998.

21 C. Howell. Error Handling: When bad things happen to good infrastructures. In
Proceedings of the 2nd Annual Information Survivability Workshop, pages 89-92,
November 1998. Orlando, FL.

"U.S. GOVERNMENT PRINTING OFFICE: 2002/710-038/10263

51

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

